Windham-Myers – CMS 2014: Linking Satellite and Soil Data to Validate Coastal Wetland 'Blue Carbon' Inventories

Earth's Future

<u>~</u>

RESEARCH ARTICLE

10.1002/2015EF000334

Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state

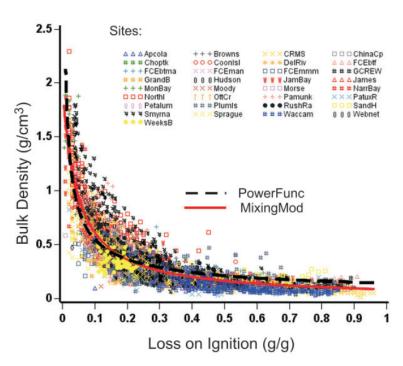


Figure 1. Best fits of the power function (_ _ _ _) BD = a LOI^b and ideal mixing model (_ _____) BD = 1/[LOI/k₁ + (1 – LOI)/k₂)] to the complete collection of 5075 sediment samples from 33 tidal marshes and mangroves distributed around the United States. The data in Figure 1 are available in Appendix S1, Supporting Information

James T. Morris¹, Donald C. Barber², John C. Callaway³, Randy Chambers⁴, Scott C. Hagen⁵, Charles S. Hopkinson⁶, Beverly J. Johnson⁷, Patrick Megonigal⁸, Scott C. Neubauer⁹, Tiffany Troxler¹⁰, and Cathleen Wigand¹¹

Challenge: Soil carbon accretion rates dominate long-term C storage in tidal wetlands

Advances from Morris et al (2016):

- 1 bulk density and organic matter are tightly coupled, allowing QA of wetland soil profiles
- 2 carbon density (g C cc⁻¹) is thus strongly constrained at ~0.03±0.02 (99% CI)
- 3 maximal accretion rates can be derived by applying upper limits of key drivers (primary productivity and sediment delivery)