Spatially Explicit Sources and Sinks of Carbon from Deforestation, Growth and Degradation in the Tropics

A. Baccini¹, W. Walker¹, L. Carvahlo², R. A. Houghton¹
A. Tyukavina³, M. C. Hansen³, P. V. Potapov³, S. V. Stehman⁴

¹The Woods Hole Research Center
²Boston University
³University of Maryland
⁴State University of New York
Outline

- Aboveground carbon loss
 - Remote sensing based stratification and deforestation combined with GLAS biomass
 - IPCC good practices
 - Results

- Aboveground carbon density loss and gain
 - “Direct” carbon density change
 - Change point analysis of biomass time series
 - Based on GLAS and MODIS biomass
 - Results
Stratification Based Biomass Loss

\[Emissions = AD \times EF \]

\[AGC_{loss} = \sum AD_i \times EF_i \]

- Forest cover loss map (AD) by Hansen et al. 2013
- Forest cover stratification for year 2000 (prior to disturbance)
 - Canopy cover
 - Tree height
 - IFL (intact forest)
- Mean carbon density estimate for each forest stratum (EF) by Baccini et al. 2012

Tree based strata AGC density values (MgC/ha)

1 – low cover
2 – medium cover short
3 – medium cover tall
4 – dense cover short
5 – dense cover short intact
6 – dense cover tall
7 – dense cover tall intact

IFL 2000

no

yes

Canopy cover (%)
GLAS Co-located Field Measurements

Biomass = 205 (t/ha)

Biomass = 78 (t/ha)

Biomass = 30 (t/ha)

Attributes of Budongo Forest Plots

<table>
<thead>
<tr>
<th>Plot</th>
<th>Shape ID</th>
<th>plot_id</th>
<th>Plot</th>
<th>Country Co</th>
<th>GPS lat</th>
<th>GPS lon</th>
<th>Biomass</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>141</td>
<td>0812028002029567</td>
<td>Plot 1</td>
<td>400</td>
<td>2.1812</td>
<td>31.75976</td>
<td>59.62494</td>
</tr>
<tr>
<td>2</td>
<td>142</td>
<td>0812028002029589</td>
<td>Plot 2</td>
<td>300</td>
<td>2.1706</td>
<td>31.75925</td>
<td>57.37620</td>
</tr>
<tr>
<td>3</td>
<td>143</td>
<td>0812028002029590</td>
<td>Plot 3</td>
<td>400</td>
<td>2.1706</td>
<td>31.75925</td>
<td>57.37620</td>
</tr>
<tr>
<td>4</td>
<td>144</td>
<td>0812028002029600</td>
<td>Plot 4</td>
<td>400</td>
<td>2.1706</td>
<td>31.75925</td>
<td>57.37620</td>
</tr>
<tr>
<td>5</td>
<td>145</td>
<td>0812028002029611</td>
<td>Plot 5</td>
<td>400</td>
<td>2.1706</td>
<td>31.75925</td>
<td>57.37620</td>
</tr>
<tr>
<td>6</td>
<td>146</td>
<td>0812028002029622</td>
<td>Plot 6</td>
<td>400</td>
<td>2.1706</td>
<td>31.75925</td>
<td>57.37620</td>
</tr>
<tr>
<td>7</td>
<td>147</td>
<td>0812028002029633</td>
<td>Plot 7</td>
<td>400</td>
<td>2.1706</td>
<td>31.75925</td>
<td>57.37620</td>
</tr>
<tr>
<td>8</td>
<td>148</td>
<td>0812028002029644</td>
<td>Plot 8</td>
<td>400</td>
<td>2.1706</td>
<td>31.75925</td>
<td>57.37620</td>
</tr>
<tr>
<td>9</td>
<td>149</td>
<td>0812028002029655</td>
<td>Plot 9</td>
<td>400</td>
<td>2.1706</td>
<td>31.75925</td>
<td>57.37620</td>
</tr>
<tr>
<td>10</td>
<td>150</td>
<td>0812028002029667</td>
<td>Plot 10</td>
<td>400</td>
<td>2.1706</td>
<td>31.75925</td>
<td>57.37620</td>
</tr>
<tr>
<td>11</td>
<td>151</td>
<td>0812028002029678</td>
<td>Plot 11</td>
<td>400</td>
<td>2.1706</td>
<td>31.75925</td>
<td>57.37620</td>
</tr>
<tr>
<td>12</td>
<td>152</td>
<td>0812028002029681</td>
<td>Plot 12</td>
<td>400</td>
<td>2.1706</td>
<td>31.75925</td>
<td>57.37620</td>
</tr>
<tr>
<td>13</td>
<td>153</td>
<td>0812028002029692</td>
<td>Plot 13</td>
<td>400</td>
<td>2.1706</td>
<td>31.75925</td>
<td>57.37620</td>
</tr>
<tr>
<td>14</td>
<td>154</td>
<td>0812028002029703</td>
<td>Plot 14</td>
<td>400</td>
<td>2.1706</td>
<td>31.75925</td>
<td>57.37620</td>
</tr>
</tbody>
</table>
Field observation network & calibration

>300 locations > 30,000 trees measured

- Columbia
- Ecuador
- Bolivia
- Brazil
- Gabon
- DRC
- Uganda
- Tanzania
- Vietnam
- Cambodia
- Indonesia
Aboveground Biomass from LiDAR (GLAS)

- Biomass estimates at each GLAS location
- Height and metrics from GLAS waveform

Biomass = HOME + H10 + H60 + CANOPY_ENE + H25

Standard error 22.6 MgC/ha
Adjusted R-squared: 83.2

GLAS year 2007
Results – Stratification Based

Biomass strata map

Biomass loss map

Forest area change (AD)
Hansen et al 2013

\[AGC_{loss} = \sum AD_i \times EF_i \]

<table>
<thead>
<tr>
<th>Period (2000s)</th>
<th>AGC current study</th>
<th>AGC + BGC Harris et al. 2012</th>
<th>AGC + BGC Achard et al. 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>estimate</td>
<td>median</td>
<td>range</td>
</tr>
<tr>
<td>Africa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00-05</td>
<td>234</td>
<td>116</td>
<td>54 - 218</td>
</tr>
<tr>
<td>05-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latin America</td>
<td></td>
<td>440</td>
<td>309 - 674</td>
</tr>
<tr>
<td>00-05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05-10</td>
<td>442</td>
<td>257</td>
<td>208 - 345</td>
</tr>
<tr>
<td>10-12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southeast Asia</td>
<td></td>
<td>346</td>
<td>314 - 378</td>
</tr>
<tr>
<td>00-05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pan-tropical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>1022</td>
<td>813</td>
<td>570 - 1220</td>
</tr>
</tbody>
</table>
“Direct” Biomass loss and gain

Baccini et al. 2012

Error 25 Mg C ha\(^{-1}\) Error 19 Mg C ha\(^{-1}\) Error 24 Mg C ha\(^{-1}\)

Amazon Basin detail from the map

DRC detail from the map

PNG detail from the map
Carbon density trajectories over time and space

- Time series approach based on “change point” analysis
- For each 500 m x 500 m pixel we identify the trajectory of carbon density
Continuous spatially explicit carbon density change

Gain
- High: 128
- Low: 1

Gain = 59.2
- StdE = 24.2
- P-V = 0.041

Loss
- High: -1
- Low: -252

Loss = -201.2
- StdE = 8.4
- P-V = 0.003

Stable
- High: 293
- Low: 0

StdE = 46.1
- P-V = 0.99

190 km x 215 km
Consistent with deforestation and sensitive to “degradation”?

Deforestation Landsat based (30 m resolution)
Hansen et al. 2014
Summary

• Stratification approach, simple, scalable, endorsed by IPCC

• “Direct” approach globally consistent, continuous, no need for strata and land cover change products

• Sensitive to losses (deforestation, degradation, natural disturbance) and gain (growth, reforestation, and afforestation)

• Fewer inputs resulting in smaller uncertainty

• Difficult to provide attribution (Deforestation or Degradation?). Do we need to?
Thank you!