

Challenges and Opportunities in Monitoring of Emission Reductions in World Bank Land Use Carbon Finance Programs

Andres Espejo Forest Carbon Partnership Facility BioCarbon Fund May 25, 2017

OUR OBJECTIVES

Promote and reward reduced greenhouse gas emissions and increased sequestration through better land management, climatesmart agriculture, and smarter land use planning and policies.

- Integrate sub-national development agenda with low-carbon pathways.
- Support forest countries to maintain and improve livelihoods, conserve biodiversity and leverage significant private and public sector finance to achieve transformational change.
- **Demonstrate approaches that can be applied nationally** i.e., national low-carbon strategies and global mechanisms of support such as REDD+.

WORLD BANK FOREST CLIMATE FUNDS (\$2.3 BILLION)

Forest Carbon Partnership Facility (2008)

BUSINESS MODEL

	Enabling Environment	Development Action		ow-Carbon evelopment enefits	
	 Policy and strategy Capacity building Social inclusion Consultation 	 Investments in low carbon development Sustainable management of forests Climate-smart ag 	Pr Sl C m ac	overty alleviation hared prosperity limate change itigation and daptation	
We provi	de:				
	Fund	ng; sistance En	Results-Based Finance for Emission Reductions		
We "crow	/d-in":	Private and Public Finance, including IDA, IBRD,GEF			
WORLD BA	ANK GROUP				

WHY WE ARE SCALING-UP OUR PROGRAMS

2004

2015

WHERE WE WORK

WHERE WE WORK – LAND USE PROGRAMS

DIFFERENCE BETWEEN FCPF CF AND ISFL

GHG ACCOUNTING REQUIREMENTS

- ER programs have to present RL and MRV system designs compliant with methodological requirements
- Some highlights:
 - ✓ GHG emissions from forest degradation or FL-FL must be accounted for
 - ✓ GHG emissions and removals have to be estimated with IPCC Tier 2, Tier 1 may be used exceptionally
 - Uncertainties estimated via Monte Carlo methods
 - ✓ Discounts are applied to ERs if HWCI >15% at 90% of confidence

ISFL Emission Reductions (ER) Program Requirements

Draft for public consultation April 18, 2017

REFERENCE LEVELS OF ER PROGRAMS

- 7 ER programs have presented Reference Levels so far
- Some figures...

REFERENCE LEVELS OF ER PROGRAMS

- 7 ER programs have presented Reference Levels so far
- Some figures...

REFERENCE LEVELS OF ER PROGRAMS

- 7 ER programs have presented Reference Levels so far
- Some figures...

RLD BANI

- Activity data has been usually estimated with EO data with two approaches:
 - <u>Wall-to-wall approach</u>, i.e. maps
 - <u>Sampling approach</u>
- However, the use of maps has some issues...

• Example of probabilities matrix of change map

Good practices for estimating area and assessing accuracy of land change

Pontus Olofsson ^{a,*}, Giles M. Foody ^b, Martin Herold ^c, Stephen V. Stehman ^d, Curtis E. Woodcock ^a, Michael A. Wulder ^e

- Olofsson et al. (2014) is the first attempt to provide guidance in order to address the challenges of using maps to estimate Activity Data
- The approach is to use sample reference data and change maps for stratification, in order to obtain a stratified estimate (design-based inference)

Map = Strata

Sampling of reference data

Inference

Good practices for estimating area and assessing accuracy of land change

Pontus Olofsson ^{a,*}, Giles M. Foody ^b, Martin Herold ^c, Stephen V. Stehman ^d, Curtis E. Woodcock ^a, Michael A. Wulder ^e

- <u>Five out of seven programs</u> of the CF have applied this guidance
- Costa Rica has not applied it as it has applied complex Tier 3 integration frameworks for estimating the RL
- However, some challenges have been faced when establishing their Reference Levels...

• Challenge 1: Too large statistical uncertainty

• <u>Challenge 2</u>: Difficulty in the application when large complex classes (e.g. complex integrated methods)

*Ministry of Agriculture and Rural Development. 2016. Vietnam's ER program document

• <u>Challenge 2</u>: Difficulty in the application when large complex classes (e.g. complex integrated methods)

• <u>Challenge 3</u>: How to estimate ERs with precision?

• <u>Challenge 3</u>: How to estimate ERs with precision?

ACTIVITY DATA ESTIMATION – OPPORTUNITIES

- 1. How to reduce uncertainty of AD in design-based inference?
- 2. How to estimate uncertainty in complex legends or high integration methods?
 - 1. Options in design-based inference
 - 2. Options in model-based inference
- 3. How to estimate the change of AD and its uncertainty?
 - 1. Options of sampling designs
 - 2. Montecarlo simulations

- The methodological requirements of the CF/ISFL require accounting of GHG emissions from degradation
- ER programs have piloted different methods to estimate degradation
- ER programs have successfully estimated GHG emissions from degradation...
- ...yet, still many uncertainties and limitations

- Mexico, Vietnam and DRC: Degradation detected as transitions between forest types (e.g. primary to secondary forest)
- <u>Some issues</u>: only detects high disturbance degradation, high uncertainty in the classification

- **Congo, Madagascar**: Degradation is detected through changes in vegetation indices in a temporal series of medium resolution imagery
- <u>Some issues</u>: High commission errors, no VHR imagery available for validation,

2012

- Costa Rica, Madagascar: Degradation is detected through changes canopy cover observed in VHR imagery
- <u>Some issues</u>: coverage of VHR imagery, impossibility to detect small changes in canopy

• **Chile**: Using stocking tables built with NFI data, and they are applied to spatial explicit stocking models

33

- Ghana, Congo: Using extracted timber volumes as proxies of degradation by multiplying volumes to damage factors
- **Issues**: uncertain extracted volumes, volumes of illegal logging not available

Factor		Value (tCO2/m³)	Uncertainty
Emission from Extracted Log	ELE	0.79	0.02
Logging Damage Factor	LDF	2.46	0.17
Logging Infrastructure Factor	LIF	0.50	0.13
Total Emission Factor	TEF	3.75	0.21

OTHER CHALLENGES AND OPPORTUNITIES - WETLANDS Age, extent and carbon storage of the central Congo Basin peatland complex

Greta C. Dargie^{1,2*}, Simon L. Lewis^{1,2*}, Ian T. Lawson³, Edward T. A. Mitchard⁴, Susan E. Page⁵, Yannick E. Bocko⁶ & Suspense A. Ifo⁶

- Peatlands in the Congo basin store a quantity that is equivalent to <u>95% of the above-ground carbon stocks of</u> the tropical forests of the entire Congo Basin
- These areas are not yet under threat
- However, research is needed in order to understand the carbon dynamics and estimate potential impact of future policies over these areas

THANK YOU

