

Overall coordination:

Phil DeCola, Emily Upton and Oksana Tarasova

National science team lead authors:

Dominik Brunner, Alistair Manning, Shamil Maksyutov

Subnational/urban science team lead authors:

Felix Vogel, Jocelyn Turnbull, Kevin Gurney, Eric Kort, Kim Mueller

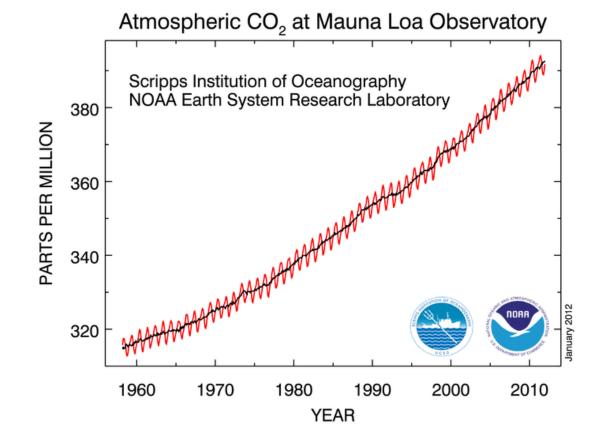
Industrial CH₄ science team lead authors:

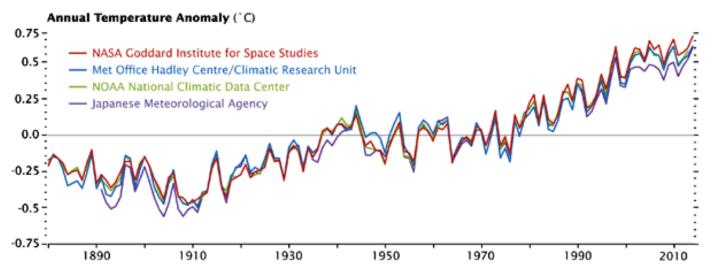
Daniel Zavala-Araiza, Rod Robinson

Global stocktake science team lead authors:

Pep Canadell, Philippe Ciais, Florin Vladu

Cross-cutting modelling science team lead authors:


Sander Houweling, Thomas Lauvaux



Environment and Climate Change Canada

The bedrock of the UNFCCC process is made from the highprecision, long-term, sciencebased (or evidence-based) info; data records like the "Keeling curve" and the global average temperature records

GHG monitoring and reporting in 2010: atmospheric "top-down" versus inventory "bottom-up"

Can atmospheric measurements and models

"verify" inventories?

Verify -

- to prove the truth of, as by evidence or testimony; confirm; substantiate: *Events verified his prediction.*
- to ascertain the truth or correctness of, as by examination, research, or comparison: to verify a spelling.
- 3. to act as **ultimate proof or evidence of**; serve to confirm.
- 4. *Law.*
 - *a)* to prove or confirm (an allegation).
 - b) to state to be true, especially in legal use, formally or upon oath.

Paris Agreement and GHG Monitoring: Evolving from "Top-Down versus Bottom-Up" Paradigm

Then (2009)

Now (2016)

Binding Multi-national Treaty Commitments

"we will verify your reported emissions"

Nationally Determined Contributions

"we will <u>help</u> you <u>improve</u> your data"

A grand top-down GHG Information System

Advocates: Science Community!!!

Federation of focused monitoring systems

Advocates: WMO (191 countries),UNEP, Cities (eg, C40), NGOs, Industry (eg, Oil Companies)

World Meteorological Organization EXECUTIVE COUNCIL

Seventieth Session Geneva, 20 to 29 June 2018 EC-70/Doc. 4.4 Submitted by: Chair of Plenary 25.VI.2018 APPROVED

AGENDA ITEM 4: CLIMATE SERVICES, SUPPORT TO CLIMATE ACTION AND CLIMATE RESILIENCE

AGENDA ITEM 4.4: INTEGRATED GLOBAL GREENHOUSE GAS INFORMATION SYSTEM (IG3IS)

DRAFT DECISION

Draft Decision EC-70/4.4/1

IG³IS SCIENCE IMPLEMENTATION PLAN

The Executive Council decides to approve the IG³IS Science Implementation Plan endorsed by the Commission for Atmospheric Sciences in which the executive summary is provided in the Annex to this decision;

Requests the Secretary-General to provide support to the IG³IS activities and assist in promoting IG³IS with funding agencies, and work with those Members, especially in developing countries, who plan to undertake IG³IS projects, in pursuing extrabudgetary resources to do so;

Urges Members to undertake pilot and demonstration projects that facilitate implementation of the IG³IS Implementation Plan;

Requests Members working with the Regional Associations to assign focal points for the implementation of IG³IS and to scale up the existing initiatives for regional knowledge transfer and capacity building for IG³IS implementation in the Regions;

Requests Members to improve integration of atmospheric composition observations into the national meteorological observing systems;

Requests the Commission for Atmospheric Sciences to coordinate with the appropriate technical commissions, in particular the Commission for Basic Systems, in order to ensure translation of the IG³IS scientific tools into operational services and contribution to WIGOS and GDPFS;

Agrees that the governance of the IG³IS should be established taking into account the Framework Memorandum of Understanding between the WMO and the Secretariat of the United Nations Framework Convention on Climate Change.

Support through WMO/GAW and finding new resources MeteoSwiss

> Pilot projects

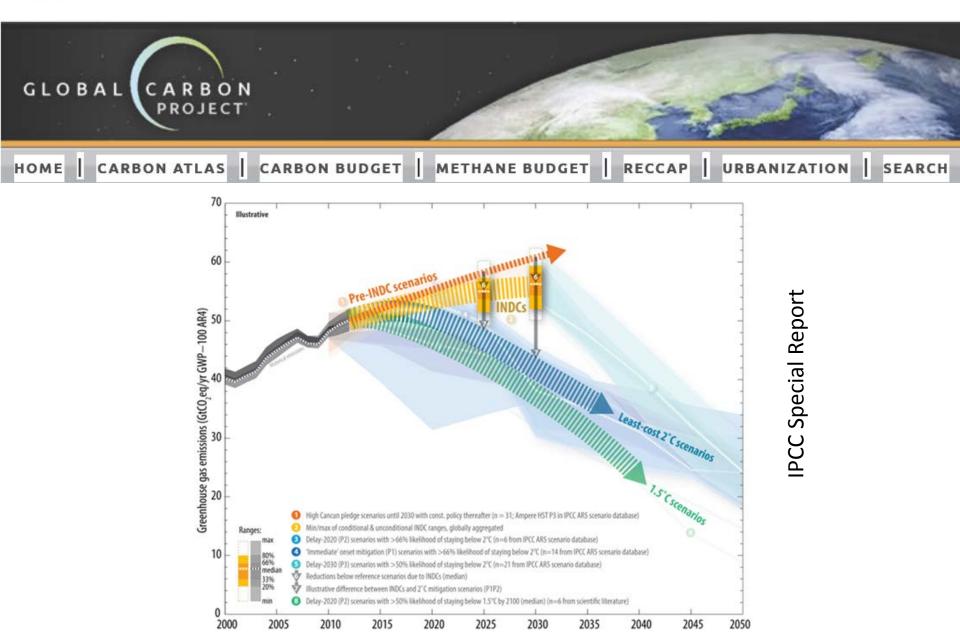
- Scaling up and capacity building
- Greater integration with Meteorological Services
- Working towards operational services (and good-practices)
- Strong link to UNFCCC

In brief:

IG³IS looks to serve users (decision-makers) who are able to take action to reduce emissions of greenhouse gases and pollutants that reduce air quality by providing the best science-based information utilizing socioeconomic data, atmospheric measurements and modelling tools.

The foundational IG³IS principles that will enable the achievement objectives and keep IG³IS on course are:

- The ultimate criterion for success is that the information produced **guides additional and valuable emission-reduction actions**
- IG³IS will provide a **common platform, co-developed with stakeholders**, for establishing **benchmarks, good practices** utilizing diverse measurement and analysis approaches inside a **reliable framework**
- IG³IS will take a **unified approach** that combines and analyzes atmospheric concentration measurements together with socioeconomic data and information on natural fluxes to better quantify and attribute greenhouse gas emissions and sinks as well as their trends.
- IG³IS matures in concert with the evolution of user-needs, policy and technical skill. This will enable researchers to learn the value of envisioned information products and users are introduced to previously unknown capabilities



The foundational IG³IS principles that will enable the achievement objectives and keep IG³IS on course are:

- The ultimate criterion for success is that the information produced **guides additional and valuable emission-reduction actions**
- IG³IS will provide a **common platform, co-developed with stakeholders**, for establishing **benchmarks, good practices** utilizing diverse measurement and analysis approaches inside a **reliable framework**
- IG³IS will take a **unified approach** that combines and analyzes atmospheric concentration measurements together with socioeconomic data and information on natural fluxes to better quantify and attribute greenhouse gas emissions and sinks as well as their trends.
- IG³IS matures in concert with the evolution of user-needs, policy and technical skill. This will enable researchers to learn the value of envisioned information products and users are introduced to previously unknown capabilities

United Nations

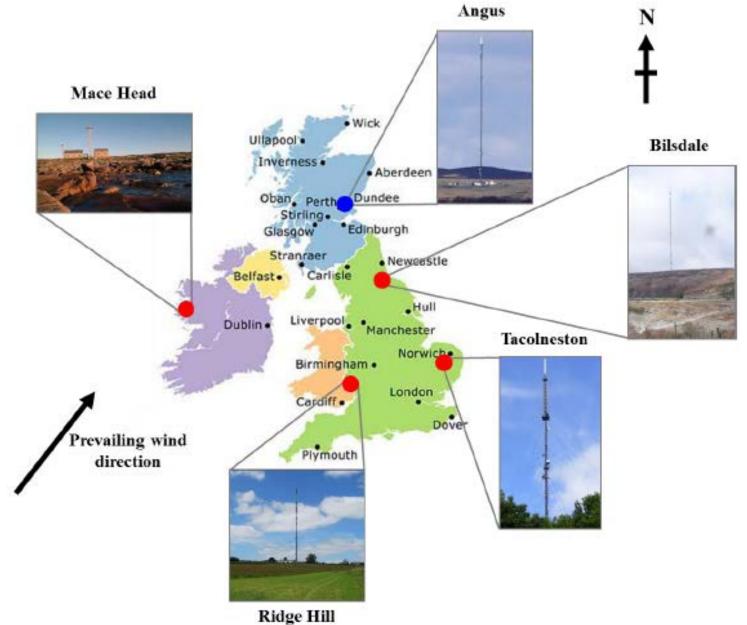
Framework Convention on Climate Change

Distr.: Limited 12 November 2017

Original: English

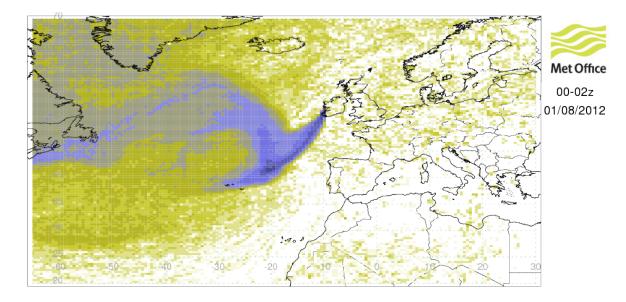
Subsidiary Body for Scientific and Technological Advice Forty-seventh session Bonn, 6–15 November 2017

Agenda item 8 Research and systematic observation


Research and systematic observation

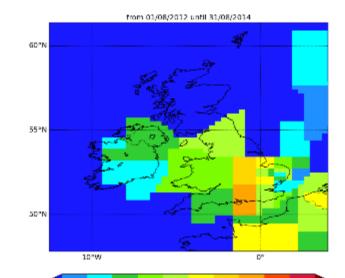
12. The SBSTA noted the increasing capability to systematically monitor greenhouse gas concentrations and emissions, through in situ as well as satellite observations, and its relevance in support of the Paris Agreement.¹⁸

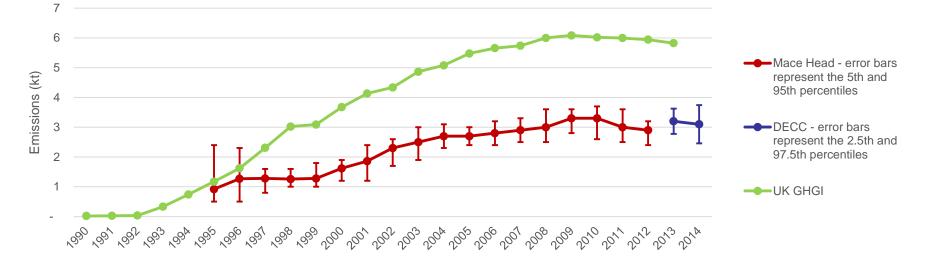
¹⁸ See the section titled "Decision 51 - IG3IS Implementation Plan" in the WMO submission, referred to in paragraph 4(a) above, and the summary report on the Earth Information Day, paragraphs 30 and 31 and 73–86, referred to in paragraph 3 above.



Network in support of national inventory reporting

Mace Head air history maps are generated for each 2-hour period between 1989 and 2015

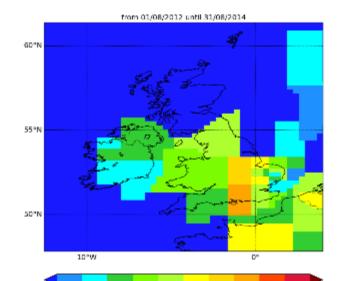

- Use the NAME transport model driven by 3-D meteorology to understand the recent (3-4 weeks) history of the air arriving at measurement stations
- Two stage process:
 - Estimate long-term Northern Hemisphere baseline concentrations using Mace Head observations.
 - Estimate regional emissions through inversion modelling (InTEM).

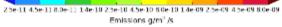

- Significant mismatch throughout the entire time-series of emissions, approximately inversion is 50% lower than inventory.
- Investigated the refrigeration model used by inventory compilers, key variables to be reconsidered by BEIS (formerly DECC):
 - **Refill rate**
 - Uptake rate

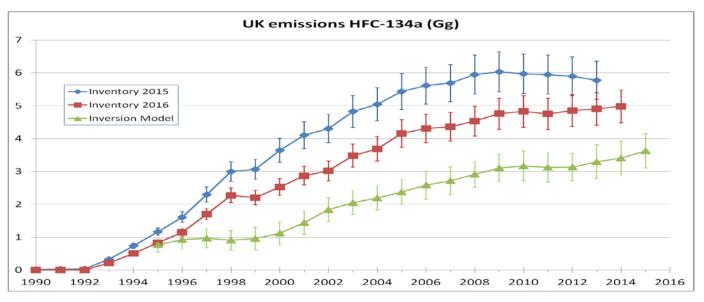
ntegrated

Information System

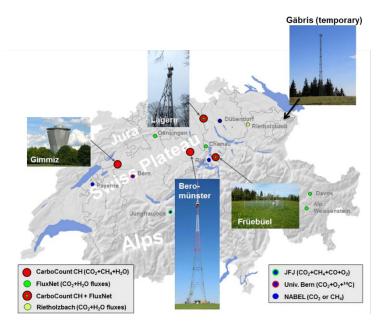
5e-10 4 5e-10 8 0e-10 1 de-09 2 5e-09 4 5e-09 8 0e-09 Emissions g/m²/s



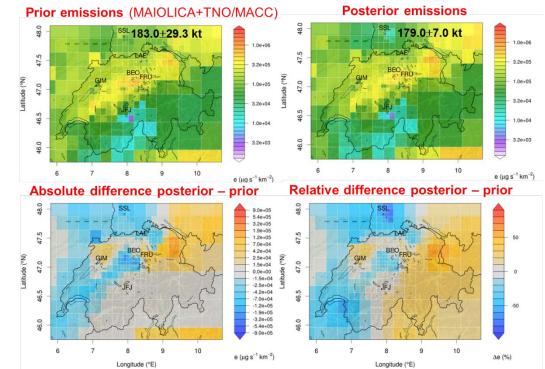



- Significant mismatch throughout the entire time-series of emissions, approximately inversion is 50% lower than inventory.
- Investigated the refrigeration model used by inventory compilers, key variables to be reconsidered by BEIS (formerly DECC):
 - **Refill rate**
 - **Uptake rate**

ntegrated

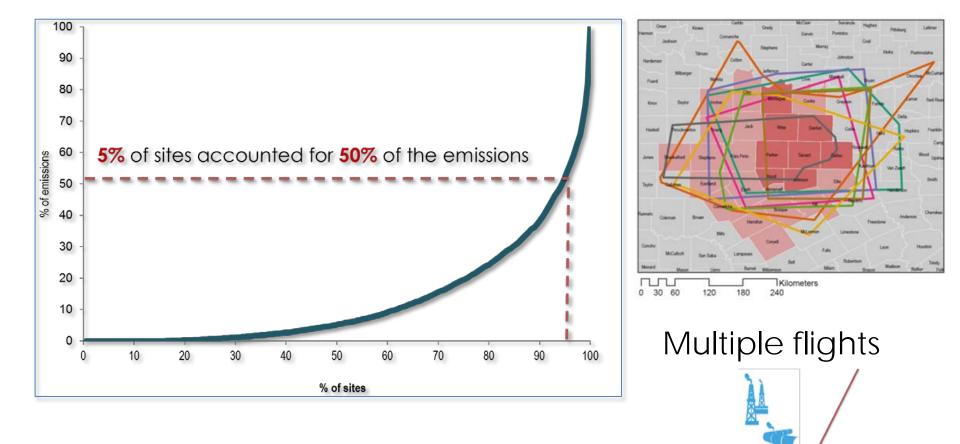

Information System

Example from Switzerland


Integrated

Global Greenhouse Gas Information System

New GHG measurement network established (project CarboCount-CH)


CH₄ emissions in Switzerland 2013

Henne, S.,D Brunner et al.,2016 : Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling, Atmos. Chem. Phys., 16, 3683–3710, www.atmos-chem-phys.net/16/3683/2016/

Detect and quantify anthropogenic methane emissions

Attribution techniques

The foundational IG³IS principles that will enable the achievement objectives and keep IG³IS on course are:

• The ultimate criterion for success is that the information produced **guides additional and valuable emission-reduction actions**

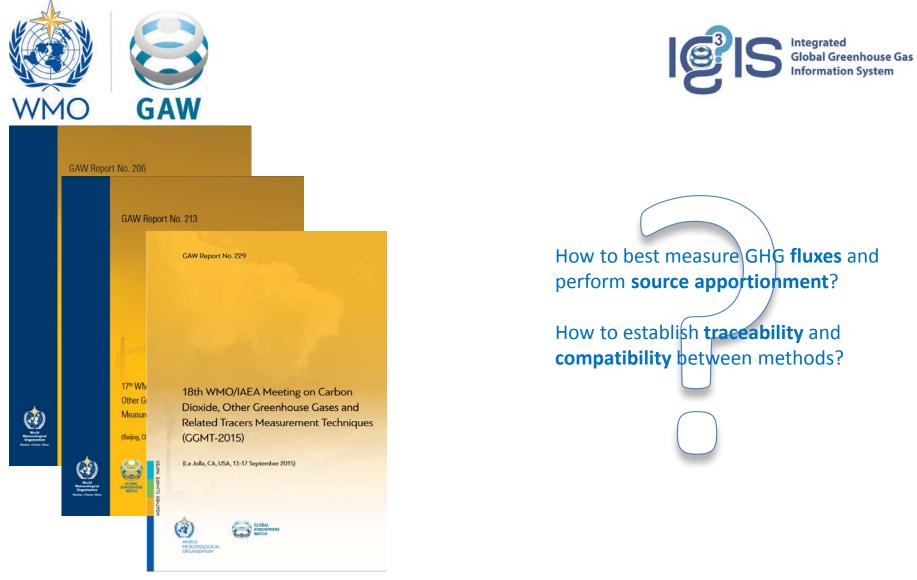
• IG³IS will provide a common platform, co-developed with stakeholders, for establishing benchmarks, good practices utilizing diverse measurement and analysis approaches inside a reliable framework

• IG³IS will take a **unified approach** that combines and analyzes atmospheric concentration measurements together with socioeconomic data and information on natural fluxes to better quantify and attribute greenhouse gas emissions and sinks as well as their trends.

• IG³IS matures in concert with the evolution of user-needs, policy and technical skill. This will enable researchers to learn the value of envisioned information products and users are introduced to previously unknown capabilities

Growing interest of private sector

GHG monitoring in Urban areas

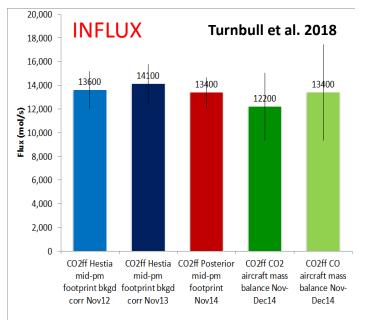


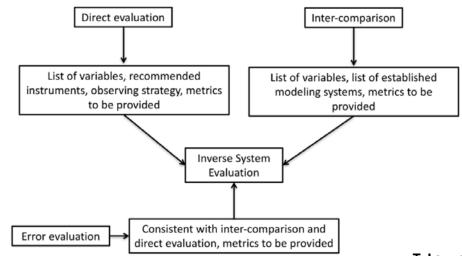
Site specific CH₄ monitoring

Source/leak detection of CH₄ from

How to measure global/regional GHG concentrations (and isotopes, etc.)?

-> Existing peer-reviewed literature and GAW recommendations


How to establish traceability and compatibility between methods?


-> WMO scales (and NMI) plus GAW recommendations

How to best measure GHG **fluxes** and perform **source apportionment**? How to establish **traceability** and **compatibility** between methods?

T. Lauvaux

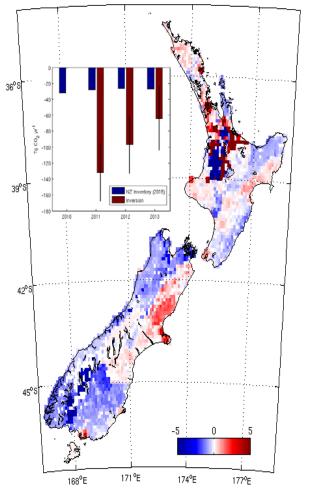
Figure 7.1: $IG^{3}IS$ inverse model evaluation strategy, combining results of intercomparison experiments, with extended benchmarking and error assessment.

- Different observational techniques
- Different modelling frameworks (cross-cutting activity)
- Novel emission data products

The foundational IG³IS principles that will enable the achievement objectives and keep IG³IS on course are:

• The ultimate criterion for success is that the information produced **guides additional and** valuable emission-reduction actions

• IG³IS will provide a **common platform, co-developed with stakeholders**, for establishing **benchmarks, good practices** utilizing diverse measurement and analysis approaches inside a **reliable framework**


• IG³IS will take a **unified approach** that combines and analyzes atmospheric concentration measurements together with socioeconomic data and information on natural fluxes to better quantify and attribute greenhouse gas emissions and sinks as well as their trends.

• IG³IS matures in concert with the evolution of user-needs, policy and technical skill. This will enable researchers to learn the value of envisioned information products and users are introduced to previously unknown capabilities

CO₂ inversion indicates larger land sink in NZ

2011-2013 mean CO2 flux distribution in kg CO2 m-2 yr-1

- Initial inversion using two observation sites indicates larger uptake than prior model or bottom up accounting, particularly in forested regions
- Ongoing work 5 national sites
 - Targeted studies of natural forest, plantation forest, pasture and urban landscapes
 - Detailed bottom-up modelling and atmospheric inversions at national and regional scales
 - Feedback between atmospheric observations and bottom-up information to refine both and provide best estimates of land carbon exchange

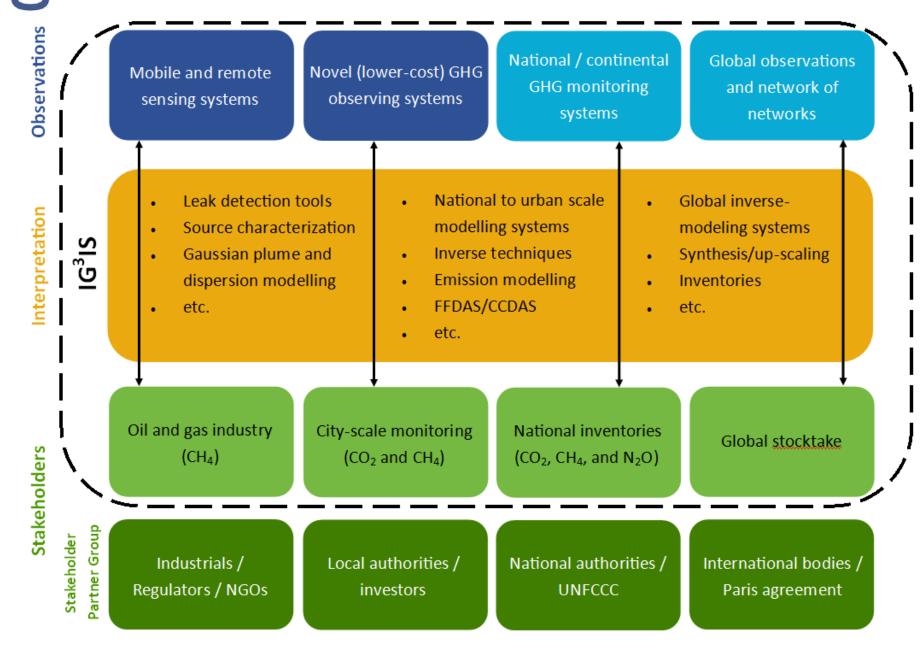
Jocelyn Turnbull, GNS Science New Zealand

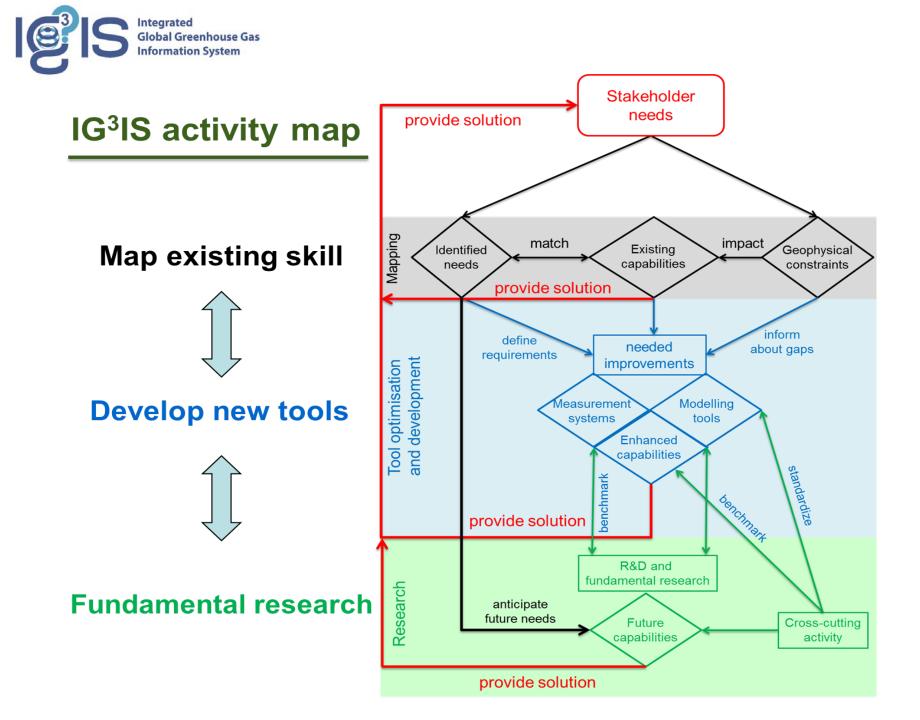
Atmospheric CO₂ observations and models suggest strong carbon uptake by forests in New Zealand Steinkamp et al, Atmos. Chem. Phys., 17, 47–76, 2017, doi:10.5194/acp-17-47-2017

The foundational IG³IS principles that will enable the achievement objectives and keep IG³IS on course are:

• The ultimate criterion for success is that the information produced **guides additional and** valuable emission-reduction actions

• IG³IS will provide a **common platform, co-developed with stakeholders**, for establishing **benchmarks, good practices** utilizing diverse measurement and analysis approaches inside a **reliable framework**


• IG³IS will take a **unified approach** that combines and analyzes atmospheric concentration measurements together with socioeconomic data and information on natural fluxes to better quantify and attribute greenhouse gas emissions and sinks as well as their trends.


• IG³IS matures in concert with the evolution of user-needs, policy and technical skill. This will enable researchers to learn the value of envisioned information products and users are introduced to previously unknown capabilities

Integrated

Global Greenhouse Gas Information System

Role of the science team(s)

- Evaluate, endorse, and advise on the technical merits of project proposals looking for IG³IS endorsement and partnership as well as guide implementation of IG³IS projects
- Lead IG³IS crosscutting activities, research and development activities, and updating the IG³IS Implementation Plan
- Keep informed of and evaluate the scientific developments in the fields of greenhouse gasses and co-emitted species (e.g., aerosols and reactive gasses), advances in atmospheric measurement techniques, inverse modelling techniques, data assimilation and other scientific aspects
- Establish, publish and promote best practices for individual IG³IS activities (observations, inverse modelling techniques, data assimilation); and contribute to the organization of technical/expert meetings on IG³IS objectives.
- Promote and facilitate research relevant to IG³IS objectives within scientific community and solicit inputs to IG³IS activities

Demand mapping for national

Increasing model complexity

		Tier 1 Use established (global) model and inversion system, operated by external experts	Tier 2 Use established (global) model and inversion system; develop local expertise to operate the system	Tier 3 Taylored high-resolution modeling and inversion system, operated by local experts
Tier 1	Single representative	Trend in total emissions in	Total emissions and their	Total emissions and their
	station in country or	area of influence of site(s)	trend in area of influence of	trend with higher accuracy in
	station every 500-1000 km		site(s)	area of influence of site(s)
Tier 2	Network of sites covering	Trend in country total	Total country emissions and	Total country emissions and
	all parts of country, simple	emissions, no separation	their trend, no separation	their trend with higher
	measurement	between anthropogenic and	between anthropogenic and	accuracy, no separation
	infrastructure	biospheric fluxes	biospheric fluxes	between anthropogenic and
				biospheric fluxes
Tier 3	Network of sites covering	Trend in country total	Total country emissions and	Total country emissions and
	all parts of country,	emissions, separation	their trend, separation	their trend with higher
	additional tracers (radon,	between anthropogenic and	between anthropogenic and	accuracy, separation between
	radiocarbon, isotopes)	biospheric fluxes, sector-	biospheric fluxes, sector-	anthropogenic and biospheric
7		specific information	specific information	fluxes, sector-specific info.

Demand mapping for urban/subnational

	Level of sophistication of urban stakeholder needs					
Complexity of solution	Identify major emitters and anomaly detection	Quantification of total GHG emissions	Assessment of GHG emissions per sector	Tracking annual and long-term emission changes	Understand short-term emission changes and spatial patterns	Process understanding of emissions and tracking of mitigation impacts
	Inventory validation (A1)	Inventory or emission model (A2)	Sector-specific inventory or emission model (A3)	Continuously updated inventory or emission model (A4)	Temporally and spatially disaggregated inventory or emission model (A5)	<u>Process-based</u> <u>emission model</u> <u>using real-time</u> <u>emission data</u> <u>(A6)</u>
	Mobile surveys (B1)	Mass-balance (B2) Radon tracer method (B3)	Multi-tracer ratio observations (B4)	Radon tracer method (B5) Multi-tracer observations (B6)	Mobile surveys (B7) Urban flux towers (B8) <u>Repeated mass-</u> <u>balance (B9)</u>	Urban flux towers (B10) <u>Dedicated field</u> <u>campaigns (B11)</u>
	Remote sensing (C1)	DAS using short- term observations (C2)	DAS using dense observations (C3) <u>DAS using multi-</u> species data (C4)	DAS using long-term observations (C5)	DAS using dense observations (C6)	<u>FFDAS</u> <u>DAS using multi-</u> <u>species (C7)</u>

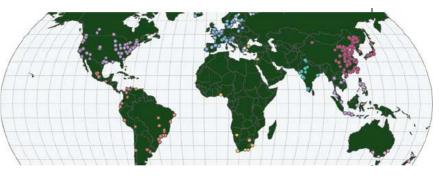

Demonstrated skills

Theoretically tested skills Future potential skills

DAS = data assimilation system

Growing diversity of research in cities

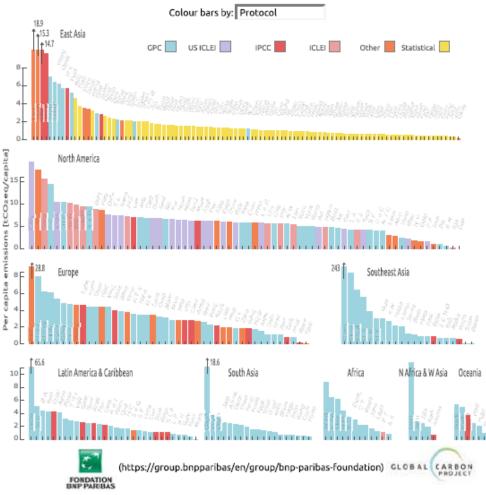
Networks of subnational stakeholders



New data product for comparison and city classification

A global dataset of CO₂ emissions and ancillary data related to emissions for 343 cities

Cathy Nangini¹, Anna Peregon¹, Philippe Ciais¹, Ulf Weddige², Felix Vogel³, Jun Wang⁴, François-Marie Bréon¹, Simeran Bachra⁵, Yilong Wang¹, Kevin Gurney⁶, Yoshiki Yamagata⁷, Kyra Appleby⁵, Sara Telahoun⁵, Josep G. Canadell⁸, Arnulf Grübler⁹, Shobhakar Dhakal¹⁰, Felix Creutzig^{2,11}


Accepted in Nature Scientific Data

Dataset available for download here (https://doi.pangaea.de/10.1594/PANGAEA.884141), fully described in

Nangini et al. (2018) (https://doi.pangaea.de/10.1594/PANGAEA.884141).

Per capita emissions [tCO2eq/capita]

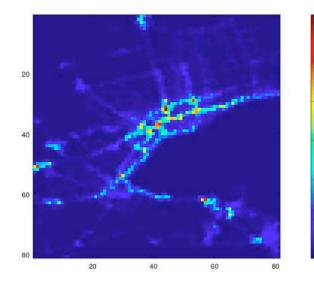
Demand mapping for urban/subnational

	Level of sophistication of urban stakeholder needs					
Complexity of	Identify major emitters and anomaly detection	Quantification of total GHG emissions	Assessment of GHG emissions per sector	Tracking annual and long-term emission changes	Understand short-term emission changes and spatial patterns	Process understanding of emissions and tracking of mitigation impacts
	Inventory validation (A1)	Inventory or emission model (A2)	Sector-specific inventory or emission model (A3)	Continuously updated inventory or emission model (A4)	Temporally and spatially disaggregated inventory or emission model (A5)	Process-based emission model using real-time emission data (A6)
solution	Mobile surveys (B1)	Mass-balance (B2) Radon tracer method (B3)	Multi-tracer ratio observations (B4)	Radon tracer method (B5) Multi-tracer observations (B6)	Mobile surveys (B7) Urban flux towers (B8) <u>Repeated mass-</u> <u>balance (B9)</u>	Urban flux towers (B10) <u>Dedicated field</u> <u>campaigns (B11)</u>
	Remote sensing (C1)	DAS using short- term observations (C2)	DAS using dense observations (C3) <u>DAS using multi-</u> <u>species data (C4)</u>	DAS using long-term observations (C5)	DAS using dense observations (C6)	<u>FFDAS</u> <u>DAS using multi-</u> <u>species (C7)</u>

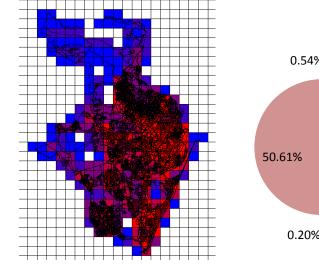
Demonstrated skills

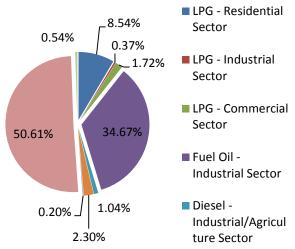
Theoretically tested skills Future potential skills

DAS = data assimilation system

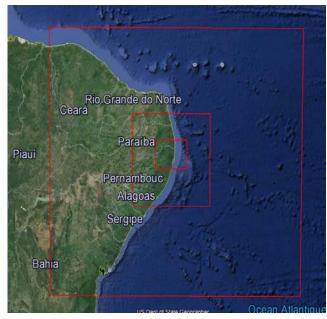

Delivering emission estimates in Recife, Brazil

1. Build emission inventory

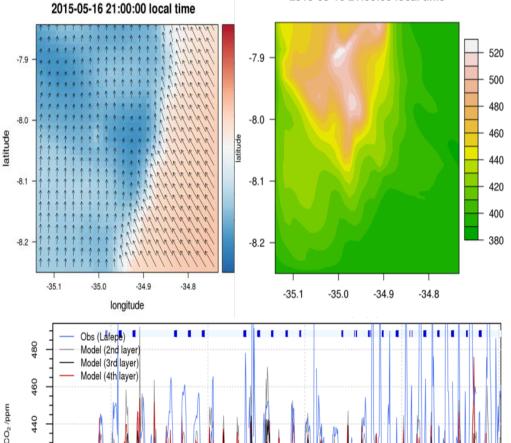

- 2. Establish modelling system
- 3. Setup measurement system
- 4. Analyse data


Towards an operational system to spatialize existing GPC inventory data

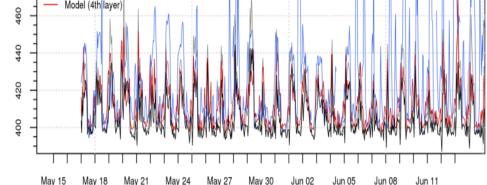
Emissions by fuel %



Toronto, Canada, 0.02°x0.02° Based on air quality inventory Collaboration LSCE, UoToronto Recife, Brazil,1km x 1km, based on IPCC and GPC Collaboration LSCE, ARIA tech.


Delivering emission estimates in Recife, Brazil

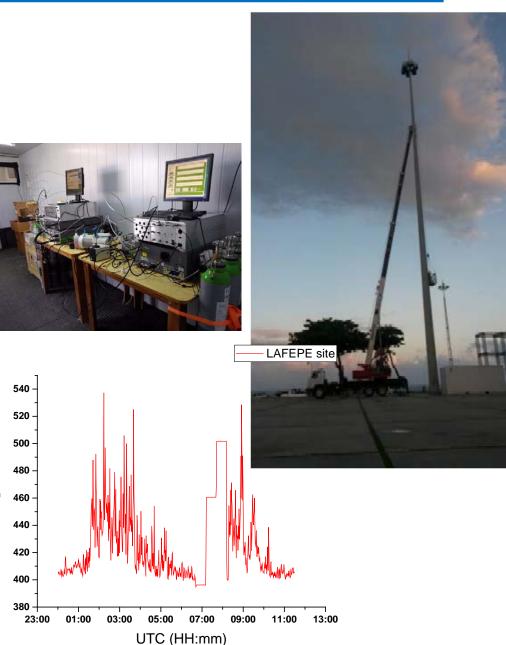
- 1. Build emission inventory
- 2. Establish modelling system
- 3. Setup measurement system
- 4. Analyse data



Nested domain

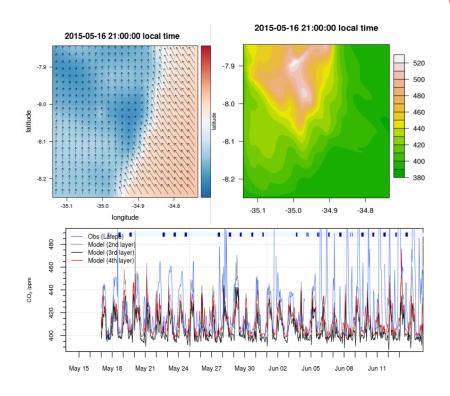
	0-6	6-12	12-18	18-24	0-6
Run 1			>		
Run 2			>	>	
Run 3					≻
Run 4					\rightarrow

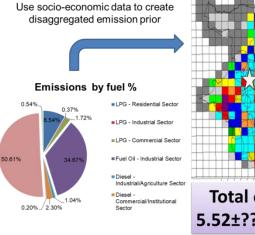
2015-05-16 21:00:00 local time

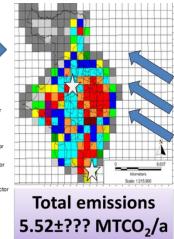


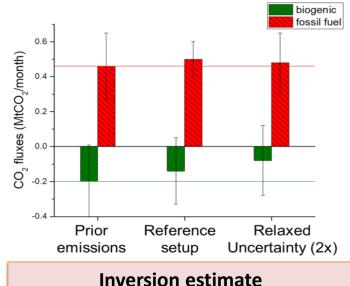
Delivering emission estimates in Recife, Brazil

- 1. Build emission inventory
- 2. Establish modelling system
- 3. Setup measurement system
- 4. Analyse data



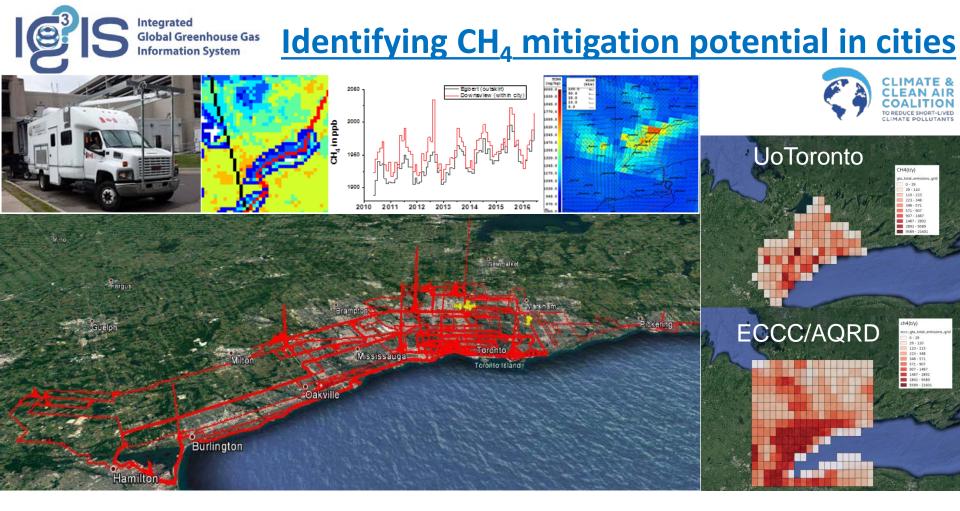



Delivering emission estimates in Recife, Brazil


- 1. Build emission inventory
- 2. Establish modelling system
- 3. Setup measurement system
- 4. Analyse data

LSCE

6.0 MTCO₂/year (±20%)


Demand mapping for urban/subnational

			Level of sop	phistication of ur	ban stakehol	der needs	
Complexity of solution		Identify major emitters and anomaly detection	Quantification of total GHG emissions	Assessment of GHG emissions per sector	Tracking annual and long-term emission changes	Understand short-term emission changes and spatial patterns	Process understanding of emissions and tracking of mitigation impacts
	-	Inventory validation (A1)	Inventory or emission model (A2)	Sector-specific inventory or emission model (A3)	Continuously updated inventory or emission model (A4)	Temporally and spatially disaggregated inventory or emission model (A5)	<u>Process-based</u> emission model using real-time emission data <u>(A6)</u>
	-	Mobile surveys (B1)	Mass-balance (B2) Radon tracer method (B3)	Multi-tracer ratio observations (B4)	Radon tracer method (B5) Multi-tracer observations (B6)	Mobile surveys (B7) Urban flux towers (B8) <u>Repeated mass-</u> <u>balance (B9)</u>	Urban flux towers (B10) <u>Dedicated field</u> <u>campaigns (B11)</u>
	Ļ	Remote sensing (C1)	DAS using short- term observations (C2)	DAS using dense observations (C3) DAS using multi- species data (C4)	DAS using long-term observations (C5)	DAS using dense observations (C6)	<u>FFDAS</u> <u>DAS using multi-</u> <u>species (C7)</u>

Demonstrated skills

Theoretically tested skills <u>Future potential skills</u>

DAS = data assimilation system

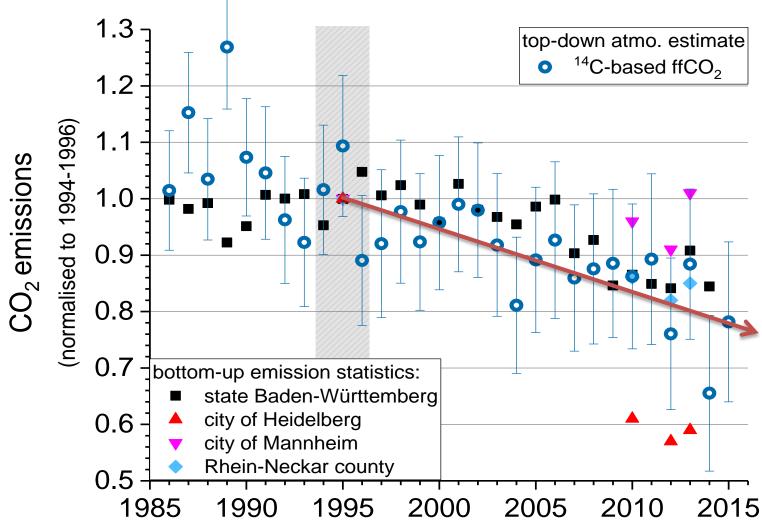
- International coordination (8 urban areas in Europe involved)
- So far ca. 3000km mobile surveys in Greater Toronto (bike and truck)
- First emission rate estimates (local scale modelling)
- High-resolution modelling (and inventories) 2.5x2.5km²

Demand mapping for urban/subnational

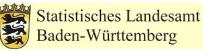
		Level of sophistication of urban stakeholder needs					
Complexity of solution	Identify major emitters and anomaly detection	Quantification of total GHG emissions	Assessment of GHG emissions per sector	Tracking annual and long-term emission changes	Understand short-term emission changes and spatial patterns	Process understanding of emissions and tracking of mitigation impacts	
	Inventory validation (A1)	Inventory or emission model (A2)	Sector-specific inventory or emission model (A3)	Continuously updated inventory or emission model (A4)	Temporally and spatially disaggregated inventory or emission model (A5)	<u>Process-based</u> <u>emission model</u> <u>using real-time</u> <u>emission data</u> <u>(A6)</u>	
	Mobile surveys (B1)	Mass-balance (B2) Radon tracer method (B3)	Multi-tracer ratio observations (B4)	Radon tracer method (B5) Multi-tracer observations (B6)	Mobile surveys (B7) Urban flux towers (B8) <u>Repeated mass-</u> <u>balance (B9)</u>	Urban flux towers (B10) <u>Dedicated field</u> <u>campaigns (B11)</u>	
	Remote sensing (C1)	DAS using short- term observations (C2)	DAS using dense observations (C3) DAS using multi- species data (C4)	DAS using long-term observations (C5)	DAS using dense observations (C6)	<u>FFDAS</u> DAS using multi- species (C7)	

Demonstrated skills

Theoretically tested skills Future potential skills


Long-term tracking of emission changes

Courtesy: S. Hammer and I. Levin UoHeidelberg, Germany



Long-term tracking of emission changes

Updated from Levin et al. 2011 Philos. Trans. Royal Soc. A DOI: 10.1098/rsta.2010.0249

Emission data from:

World Meteorological Organization EXECUTIVE COUNCIL

Seventieth Session Geneva, 20 to 29 June 2018 EC-70/Doc. 4.4 Submitted by: Chair of Plenary 25.VI.2018 APPROVED

AGENDA ITEM 4: CLIMATE SERVICES, SUPPORT TO CLIMATE ACTION AND CLIMATE RESILIENCE

AGENDA ITEM 4.4: INTEGRATED GLOBAL GREENHOUSE GAS INFORMATION SYSTEM (IG3IS)

DRAFT DECISION

Draft Decision EC-70/4.4/1

IG³IS SCIENCE IMPLEMENTATION PLAN

The Executive Council decides to approve the IG³IS Science Implementation Plan endorsed by the Commission for Atmospheric Sciences in which the executive summary is provided in the Annex to this decision;

Requests the Secretary-General to provide support to the IG³IS activities and assist in promoting IG³IS with funding agencies, and work with those Members, especially in developing countries, who plan to undertake IG³IS projects, in pursuing extrabudgetary resources to do so;

Urges Members to undertake pilot and demonstration projects that facilitate implementation of the IG³IS Implementation Plan;

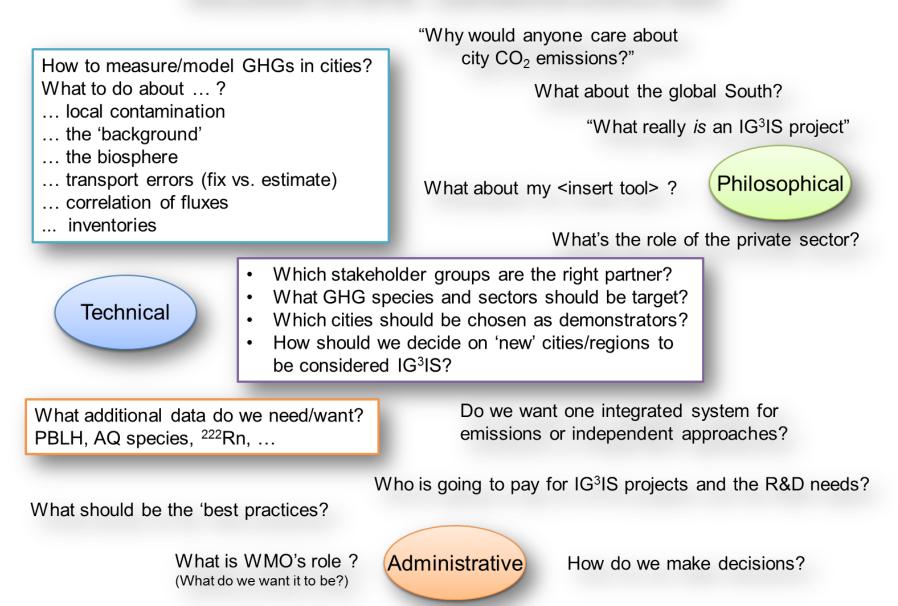
Requests Members working with the Regional Associations to assign focal points for the implementation of IG³IS and to scale up the existing initiatives for regional knowledge transfer and capacity building for IG³IS implementation in the Regions;

Requests Members to improve integration of atmospheric composition observations into the national meteorological observing systems;

Requests the Commission for Atmospheric Sciences to coordinate with the appropriate technical commissions, in particular the Commission for Basic Systems, in order to ensure translation of the IG³IS scientific tools into operational services and contribution to WIGOS and GDPFS;

Agrees that the governance of the IG³IS should be established taking into account the Framework Memorandum of Understanding between the WMO and the Secretariat of the United Nations Framework Convention on Climate Change.

Support through WMO/GAW and finding new resources MeteoSwiss


> Pilot projects

- Scaling up and capacity building
- Greater integration with Meteorological Services
- Working towards operational services (and good-practices)
- Strong link to UNFCCC

First IG³IS subnational/urban workshop

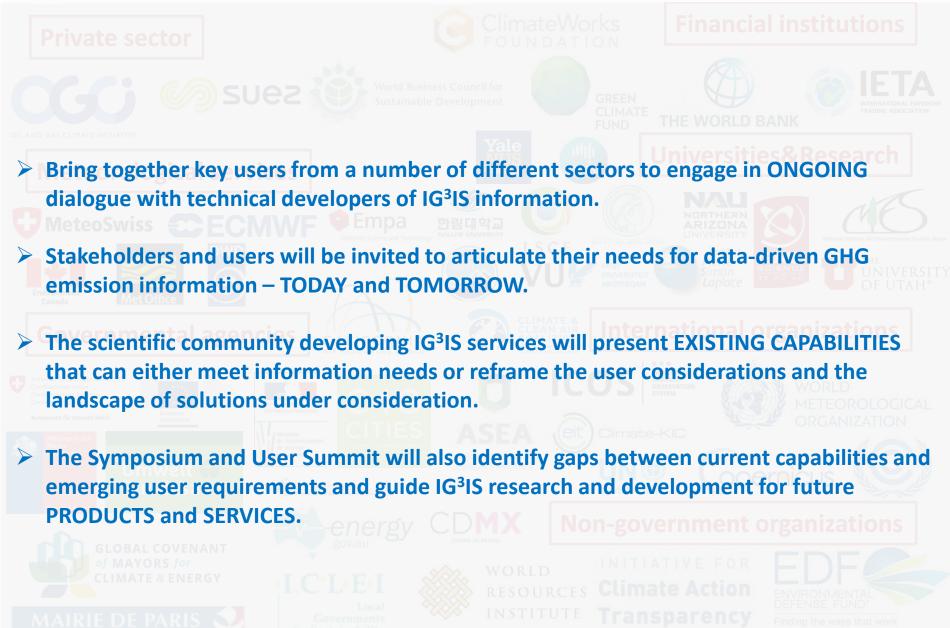
Discussion on IG³IS - subnational science team

First IG³IS subnational/urban workshop

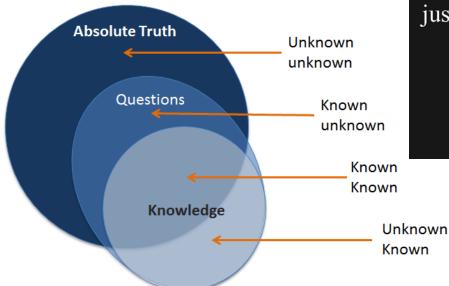
Discussion on IG³IS - subnational science team

the b > Key ques transport errors (fit corr > ti Draft for		commendations document identified w paper on urban/subnational IG ³ IS research
inventories Agenda f	or first IG ³ IS symp	osium and user summit ^{e role} of the private sector?

What should be the 'best practices?


What is WMO's role ? (What do we want it to be?) Administrative

How do we make decisions?



First IG³IS symposium and user summit

"From 'I guess' to I know"

Integrated Global Greenhouse Gas Information System

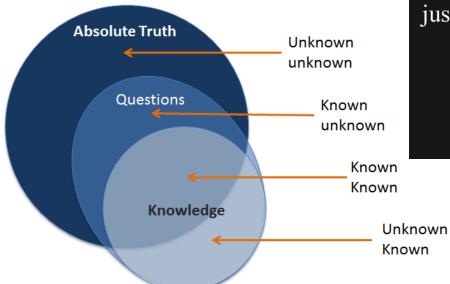
It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so.

Mark Twain

There are known knowns; there are things we know that we know.

There are known unknowns; that is to say, there are things that we now know we don't know.

But there are also unknown unknowns – there are things we do not know we don't know.


-Donald Rumsfeld

v.theauotes i

"From 'I guess' to I know"

Integrated Global Greenhouse Gas Information System

It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so.

Mark Twain

Thank you

There are known knowns; there are things we know that we know.

There are known unknowns; that is to say, there are things that we now know we don't know.

But there are also unknown unknowns – there are things we do not know we don't know.

-Donald Rumsfeld

w.theauotes.in