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A B S T R A C T

Accurate and timely spatial classification of crop types based on remote sensing data is important for both
scientific and practical purposes. Spatially explicit crop-type information can be used to estimate crop areas for a
variety of monitoring and decision-making applications such as crop insurance, land rental, supply-chain lo-
gistics, and financial market forecasting. However, there is no publically available spatially explicit in-season
crop-type classification information for the U.S. Corn Belt (a landscape predominated by corn and soybean).
Instead, researchers and decision-makers have to wait until four to six months after harvest to have such in-
formation from the previous year. The state-of-the-art research on crop-type classification has been shifted from
relying on only spectral features of single static images to combining together spectral and time-series in-
formation. While Landsat data have a desirable spatial resolution for field-level crop-type classification, the
ability to extract temporal phenology information based on Landsat data remains a challenge due to low tem-
poral revisiting frequency and inevitable cloud contamination. To address this challenge and generate accurate,
cost-effective, and in-season crop-type classification, this research uses the USDA's Common Land Units (CLUs)
to aggregate spectral information for each field based on a time-series Landsat image data stack to largely
overcome the cloud contamination issue while exploiting a machine learning model based on Deep Neural
Network (DNN) and high-performance computing for intelligent and scalable computation of classification
processes. Experiments were designed to evaluate what information is most useful for training the machine
learning model for crop-type classification, and how various spatial and temporal factors affect the crop-type
classification performance in order to derive timely crop type information. All experiments were conducted over
Champaign County located in central Illinois, and a total of 1322 Landsat multi-temporal scenes including all the
six optical spectral bands spanning from 2000 to 2015 were used. Computational experiments show the inclusion
of temporal phenology information and evenly distributed spatial training samples in the study domain improves
classification performance. The shortwave infrared bands show notably better performance than the widely used
visible and near-infrared bands for classifying corn and soybean. In comparison with USDA's Crop Data Layer
(CDL), this study found a relatively high Overall Accuracy (i.e. the number of the corrected classified fields
divided by the number of the total fields) of 96% for classifying corn and soybean across all CLU fields in the
Champaign County from 2000 to 2015. Furthermore, our approach achieved 95% Overall Accuracy by late July
of the concurrent year for classifying corn and soybean. The findings suggest the methodology presented in this
paper is promising for accurate, cost-effective, and in-season classification of field-level crop types, which may
be scaled up to large geographic extents such as the U.S. Corn Belt.
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1. Introduction

Accurately classifying crop types is important for both scientific and
practical purposes. Classifying land cover is a classic question in the
remote sensing field, and has been an active research topic for decades
(Hansen et al., 2014, 2011, 2000; Hansen and Loveland, 2012; King
et al., 2017; Sexton et al., 2013b; Song et al., 2017; Vogelmann et al.,
2001; Zhan et al., 2002). However, how to generate accurate and timely
maps for crop types with high spatial resolution remains a scientific
challenge. Currently, we have no in-season crop type data available for
large-scale US croplands. For example, though the USDA publishes the
Cropland Data Layer (CDL) data at 30-m spatial resolution, it is usually
released in the spring of the subsequent year, with a time lag of at least
four to six months after the previous year's harvest time (Boryan et al.,
2011). For practical purposes, accurate and timely crop-type classifi-
cation provides estimations of the planting/harvesting crop areas for a
variety of monitoring and decision-making applications of government
and private sectors such as crop insurance, land rental, supply-chain
logistics, commodity markets, etc. Furthermore, crop-type classification
is also the prerequisite for conducting crop yield prediction (Bolton and
Friedl, 2013; Lobell et al., 2015). As a result, accurate and in-season
information of crop types has considerable importance for management
decision-making in public/private sectors and regional economic fore-
casting.

Extensive research has been done in crop-type classification using
two major classification strategies (Chang et al., 2007; Foerster et al.,
2012; Lobell and Asner, 2004; Van Niel and McVicar, 2004). One is to
solely use the spectral features from a single satellite scene sampled
during a certain day within a growing season (Boryan et al., 2011; Van
Niel and McVicar, 2004; Yang et al., 2011), and the other is to use both
spectral and temporal information during one or multiple growing
seasons (Chang et al., 2007; Foerster et al., 2012; Wardlow et al., 2007;
Wardlow and Egbert, 2008). The first strategy is based on the rationale
that different land covers have distinctive spectral features, and these
spectral features in turn can be used for classification. However, some
crops have similar spectral information during the peak-growing season
when the satellite image is usually acquired, which makes separation of
crop types difficult. In addition, spectral differences between crops and
natural vegetation (e.g. grass or trees) may be small at certain times of a
year. As a result, the similar spectral features between different crops as
well as between crops and natural vegetation pose a major challenge for
accurate classification. The second strategy utilizes both the spectral
and temporal information, which leads to improvements in classifica-
tion accuracy. Crops usually have different seasonal variations and
sowing dates. For example, in the U.S. Corn Belt, corn is usually sown
earlier than soybean, and grass usually starts its growing season in
spring that is earlier than most crops. These temporal features can be
used to improve the accuracy of crop classification. However, the
second strategy requires time-series information from multiple satellite
images rather than from a single image, and traditionally researchers
have implemented this approach using data from sensors with low- or
medium- spatial resolution such as the Moderate Resolution Imaging
Spectroradiometer (MODIS) (Wardlow et al., 2007; Wardlow and
Egbert, 2008).

To achieve field-level classification of crop types, appropriate spa-
tial resolution satellite data inputs to field sizes are required (Lobell,
2013). For the U.S. context, such satellites exist, such as Landsat
(Hansen and Loveland, 2012; Roy et al., 2014). Landsat imagery has a
higher spatial resolution (30m) than low- or medium- spatial resolution
e.g. MODIS data (gridded at 250m, 500m or larger pixel sizes); and
unlike SPOT (Duro et al., 2012) and other commercial satellite data,
Landsat data is freely available for both concurrent and historical per-
iods. In addition, advanced Landsat products such as the surface re-
flectance (after atmospheric correction) are readily available from the
Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)
(Schmidt et al., 2013) and the Landsat Surface Reflectance Code

(LaSRC) (USGS, 2016) for Landsat 5, 7 and 8. Landsat data has been
widely used for land cover classification at local, regional or continental
scales (Hansen and Loveland, 2012; Homer et al., 2004; Huang et al.,
2007; Liu et al., 2005; Sexton et al., 2013a; Townshend et al., 2012;
Yuan et al., 2005). However, Landsat has a low temporal resolution (16-
day revisiting cycle compared to the 1–2-day revisiting cycle of
MODIS), and clouds frequently contaminate Landsat images. Extracting
the continuous time-series information based on Landsat data (espe-
cially how to handle missing data because of cloud cover) is a chal-
lenge. To utilize both high spatial and temporal information in Landsat,
researchers have explored data-fusion approaches to integrate multi-
sources of remotely sensed data, for example, fusing MODIS and
Landsat data to achieve both high spatial and temporal resolutions (Gao
et al., 2015, 2013). However, the existing data-fusion approaches
usually fill the gap values from neighboring available pixels by as-
suming that different periods of satellite images have unchanged land
cover types, thus contradicting the purpose of identifying land cover
changes over the time. Additionally, fused satellite data is currently not
available or operationally provided at a large spatial scale.

As an alternative, we use the Common Land Unit (CLU) to aggregate
field level information based on time-series Landsat data. CLUs are
generated by the USDA to delineate the field boundary for all registered
agricultural fields for the U.S. (Boryan et al., 2011). The average size of
a single unit of CLU in Champaign County, IL, is 60.3 ± 52.6 acres
(~244,025 ± 212,865m2), which is about 16×16 ± 15×15 30-
meter Landsat pixels (Fig. S1). When a CLU field has a sub-field con-
tamination by clouds/shadows in a Landsat scene, we aggregate
Landsat information by averaging values from non-cloud only pixels
within that field and assign the mean value to that CLU field. Thus the
contamination issues can be overcome to a desirable extent, and as a
result, the weakness of lower temporal-resolution Landsat data can be
largely alleviated. The aggregated and field-level spectral information
will then be used for classification. In addition, instead of only using the
data for the same year for training/testing for crop-type classification
(Boryan et al., 2011; Wardlow and Egbert, 2008), we can also use the
data from multiple growing seasons for training our classification
model, with the premise that multiple-year data include more scenarios
of crop phenology due to various other factors (e.g. sowing date, inter-
annual climate variability) and thus can make our classification algo-
rithm more generic and robust when applying to a new year.

Machine learning approaches have been applied to a variety of data-
driven predictive applications, such as natural language understanding
and image processing (Collobert and Weston, 2008; Hinton et al., 2012;
Krizhevsky et al., 2012). Recently, deep learning, including both the
Deep Neural Network (DNN) and the Convolutional Neural Network
(CNN), shows great potential in various applications compared to other
machine learning techniques. Traditionally, classification or regression
systems require careful engineering and considerable domain knowl-
edge to extract features from raw data. However, deep learning has the
ability to discover informative features with multiple levels of re-
presentation, from lower, primitive levels to higher, abstract levels
(LeCun et al., 2015; Schmidhuber, 2015). Though neural network
methods have been developed several decades ago, recently years see
major development in this method through more layers and back-pro-
pagation optimization (i.e. deep neural network), which has made
significant improvements in classification or other applications (LeCun
et al., 2015; Schmidhuber, 2015). Deep learning is still early in its
application on remote sensing data for crop-type classification; there-
fore questions like what information is needed and how to transform
the information that can be used in deep learning model need to be
answered.

This paper describes a new crop classification system that is targeted
at the U.S. Corn Belt, a region dominated by corn and soybeans. We
only focused on farmland and pre-filtered other types of land cover
(based on CDL), and classified all the patches of farmland into three
major categories: corn, soybean and others. We used CLU to aggregate
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the information of each field based on time-series Landsat data in order
to alleviate the cloud contamination issue, and then built a deep-
learning classification model based on DNN using high-performance
computing. The research was designed to understand how different
spatial and temporal features affect the classification performance. The
selected study region of Champaign County, IL is located in the middle
of the U.S. Corn Belt with a landscape dominated by corn and soybean
production. Two supercomputers, ROGER and Blue Waters at the
University of Illinois, are used for generating the time-series Landsat
data stack. ROGER has large memory space that allows rapid pre-
processing of the large spatial data; and Blue Waters, with richer
computing resources, was used to build the classification model
through intensive training and testing. Specifically, we address the
following two overarching research questions:

(1) What accuracy can the integrated time-series Landsat data and deep
learning approach achieve for the crop-type classification?

(2) How early in the growing season can this method achieve the optimal
accuracy of crop-type classification using our approach?

2. Data and methods

2.1. Study area

Champaign County, Illinois, has a total area of 638,767 acres and is
located in the east-central part of the State (Fig. 1), which falls in the
U.S. Corn Belt region. Corn and soybeans are the predominant crops in
this study area, which is also the case for the majority of the U.S. Corn
Belt. According to the 2012 Census of Agriculture for Champaign
County (USDA, 2012), there were a total of 616,493 acres of farmland,
within which corn and soybeans account for about 92% of the area.
Champaign County has a humid continental climate, typical of the
Midwestern United States, with hot summers and cold, moderately
snowy winters. As a result, double cropping is not usually practiced
here – a single-season cropping system is adopted. The individual farm
fields identified by the CLU data do not always grow one type of crop.
In fact, many CLUs hold a mixture of both corn and soybeans because a
CLU is often subdivided into sub-fields that can be planted with dif-
ferent crops. Thus, we need to segment the mixed CLU farmlands into
pure corn and pure soybean fields with information provided by the
CDL before field-level information aggregation for crop-type classifi-
cation can be conducted.

2.2. Data

The study area is fully covered by Landsat Path 23 and Row 32, and
partially covered by the data of Path 22 and Row 32 in Worldwide
Reference System-2 (WRS-2). The Landsat Surface Reflectance Data
(LSRD) with 30m spatial resolution was downloaded from USGS's
EarthExplorer web portal (http://earthexplorer.usgs.gov) covering
Landsat 5, 7 and 8 for 2000 to 2015 (Table 1). More specifically, the
LSRD of Landsat 5 and 7 is generated from the Landsat Ecosystem
Disturbance Adaptive Processing System (LEDAPS) (Schmidt et al.,
2013), while the LSRD of Landsat 8 is generated from the Landsat
Surface Reflectance Code (LaSRC) (USGS, 2016). There are a total of
1322 LSRD scenes with detailed summary shown in Table 1. We used
six spectral bands of each scene for our classification algorithm, so there
were 1322 ∗ 6= 7932 images in total used. The six spectral bands are
Blue, Green, Red, NIR (Near Infrared), SWIR-1 (Shortwave Infrared)
and SWIR-2 bands respectively. The specificity of the six spectral bands
from Landsat 5, 7 and 8 is shown in Table 2. Though the spectral ranges
of the corresponding bands have slight differences between Landsat 5/7
and Landsat 8, we find these differences, which have been well studied
in previous work (Flood, 2014; Li et al., 2013), are smaller than one
standard deviation of time-series spectral curves shown in Fig. 5, which
means that these differences will not have a significant impact on our

Fig. 1. Geography of the study area (the right panel shows the Common Land Unit (CLU).

Table 1
Summary of used Landsat data.

Landsat 5 Landsat 7 Landsat 8 Total

2000 41 45 0 86
2001 40 44 0 84
2002 34 43 0 77
2003 46 40 0 86
2004 45 44 0 89
2005 42 46 0 88
2006 43 45 0 88
2007 34 45 0 79
2008 36 46 0 82
2009 40 46 0 86
2010 44 44 0 88
2011 40 46 0 86
2012 0 45 0 45
2013 0 45 31 76
2014 0 46 46 92
2015 0 45 45 90
Total 485 715 122 1322

Y. Cai et al. Remote Sensing of Environment 210 (2018) 35–47

37

http://earthexplorer.usgs.gov


classification results.
Besides directly using the spectral bands in our classification, we

also tested four commonly used vegetation indices (VIs) calculated from
the Landsat multispectral data. The four VIs are the Normalized
Difference Vegetation Index (NDVI) (Tucker, 1979), Green Chlorophyll
Vegetation Index (GCVI) (Gitelson et al., 2003), Enhanced Vegetation
Index (EVI) (Huete et al., 2002) and Land Surface Water Index (LSWI)
(Xiao et al., 2002), with their formulas shown as follows:

i) NDVI=(NIR− RED)/(NIR+ RED)
ii) GCVI=NIR/GREEN− 1
iii) EVI=G×(NIR− RED)/(NIR+ C1× RED− C2× BLUE+ L)
iv) LSWI=(NIR− SWIR1)/(NIR+ SWIR1)

NDVI is based on the fact that healthy plants usually have a higher
reflectance in near infrared (NIR) than visible bands, and NDVI has
been widely interpreted as an indicator of photosynthetic capacity
(Sellers et al., 1992). However, NDVI can saturate at high leaf area
biomass, and the development of GCVI and EVI is largely aimed to
reduce this effect (Gitelson et al., 2003; Huete et al., 2002). GCVI has
been found to have the most linear relationship with leaf area index
(LAI) for corn and soybean compared with other VIs (Gitelson et al.,
2003). EVI is designed to reduce the influence of some atmospheric
effects by including the blue bands in the VI calculation (Huete et al.,
2002). LSWI (Xiao et al., 2002) is developed to approximate canopy
water thickness, based on the rationale that the shortwave infrared
(SWIR) band is sensitive to leaf water and soil moisture.

The USDA's Cropland Data Layer (CDL) was used as “ground truth”
data, which is a raster-formatted, geo-referenced, crop-specific land
cover map with the spatial resolution of 30m/56m, depending on the
sensor used to create the data. The CDL for Champaign County from
2000 to 2015 was obtained from the CropScape website portal (https://
nassgeodata.gmu.edu/CropScape/). CDL has the spatial resolution of
30m derived from Landsat data for most of the years except for
2006–2009, which was derived from the Indian Remote Sensing
Satellite (IRS) RESOURCESAT-1 Advanced Wide Field Sensor (AWiFS)
with the spatial resolution of 56m. Since Landsat data is 30m resolu-
tion, we unified all the CDL data (56m resolution for 2006–2009, and
30m resolution after 2009 and before 2006) to be 30m using nearest
neighbor interpolation. Although the CDL is not the absolute ground
truth, it represents a viable validation data set with a thematic Overall
Accuracy greater than 95% (Boryan et al., 2011) for corn and soybean
in the U.S. Corn Belt, and it is also the crop-type classification product
with the highest accuracy that can be found. As a result, CDL was used
as ground truth data for training and testing our crop classification
model. Fig. 2(a) presents an example illustrating the corn and soybean
distribution from 2015 CDL in Champaign County.

In this study, the USDA's 2008 CLU map was used to identify field
boundaries, shown in the right side of Fig. 1. The CLU is an individual
contiguous farming parcel, which is the smallest unit of land that has 1)
a permanent, contiguous boundary; 2) common land cover and land
management; 3) a common owner, and/or a common producer asso-
ciation according to the definition of USDA. There are 19,683 polygons
in the Champaign County CLU dataset, however, not all polygons are
corn or soybean fields. After applying CDL data to filter CLU data with
only corn or soybeans, the polygon number was reduced into 13,959. As
a result, these polygons representing corn or soybean fields serve as
masks for clipping either LSRD or CDL into field-level segments. The
excluded 5724 polygons covered 57,556 acres, which comprises about
9% of Champaign County. These polygons mainly represent non crop
types like grass/pasture, forest, impervious surface, open water, un-
defined, wetland, alfalfa and other crop types such as winter wheat and
other small grains. These regions were removed from the classification.
Fig. 2(b) shows the CLU aggregated using the information of CDL at the
field-level with the crop-type labels generated from the CDL.

Table 2
Detailed information of the six spectral bands from Landsat 5, 7 and 8.

Landsat 5 and 7 Landsat 8

Band # Name Wavelength (μm) Band # Name Wavelength (μm)

Band 1 Blue 0.441–0.514 Band 2 Blue 0.452–0.512
Band 2 Green 0.519–0.601 Band 3 Green 0.533–0.590
Band 3 Red 0.631–0.692 Band 4 Red 0.636–0.673
Band 4 NIR 0.772–0.898 Band 5 NIR 0.851–0.879
Band 5 SWIR-1 1.547–1.749 Band 6 SWIR-1 1.566–1.651
Band 7 SWIR-2 2.064–2.345 Band 7 SWIR-2 2.107–2.294

Fig. 2. Example of the 2015 CDL of Champaign County. (a) Raw CDL; (b) the aggregated field-level CDL, where the CLU is used to provide the field-level boundaries.
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2.3. Data preprocessing

We first generated field-level time-series data using the Landsat
reflectance data and the CLU for each of the six spectral bands (Fig. S2).
For each CLU, the mean value was calculated from all Landsat pixels
within the CLU boundary to determine the aggregated field-level in-
formation. Even though some pixels in a polygon may be missing, there
are still uncontaminated pixels that exist within most CLUs that can be
used to calculate field-level information. The availability percentage is
calculated through the number of valid values divided by the potential
maximum number (the number of total images) of valid values for both
pixel and CLU. In general, the availability percentage improved by
more than 10% for CLU-based information (CLUs with more than 100
pixels are considered, which comprises 88% total area) instead of pixel-
based information, shown in Fig. 3. We then interpolated the field-level,
aggregated information into a daily time step for the growing season
using the Savitzky–Golay algorithm (Jonsson and Eklundh, 2002)
which can further fill certain data gaps. Using different smoothing al-
gorithms had little impact on the classification algorithm, and a simple
linear interpolation has achieved almost the same performance as the
Savitzky-Golay algorithm. For our study area, an annual time-series
span from day of year (DOY) 91 to 270 (early April to late September)
was selected to represent the growing season in the U.S. Corn Belt. It is
worth noting that before the interpolation of the time series for the
different spectral bands, data points that were outside of the 95%
percentile of the samples conditioned for each time stamp were filtered.
These filtered data were treated as missing data and the interpolation
algorithm filled in the missing values. After we derived the field-level
surface reflectance data, we then extracted the crop types from the CDL
data for each CLU field polygon as labels of training and testing data-
sets.

2.4. DNN-based classification model

A Deep Neural Network (DNN) model was used to build the crop-
type classification model. Fig. 4 shows the schematic diagram of the
approach, where xi, k (k∈ [1,2,…,n]) represents the input data, in-
cluding different spectral bands or VI at a specific DOY or a section of
time series over the growing season as xi, k for field i. The dimension n
changes according to the experiment's design. The activation function
used in our classification model was the Rectified Linear Unit (ReLU)
activation function with the form as f(z)=max (0,z). Our DNN model
has four layers, including three hidden layers, and one output layer.
Hidden layers in the network transfer raw information into meaningful
features for classification. We have tested other configurations of the

DNN model in terms of the hidden layers and different activation
functions, and found that the seven hidden layers can achieve the stable
and optimal performance in our cases, though the performance differ-
ence between three layers and seven layers of the DNN model is less
than 1% in terms of Overall Accuracy (see the definition below). Based
on the consideration of model parsimony, we use the 3-layer DNN
model results in Section 3. We have also tested other machine-learning
algorithms, such as the Support Vector Machine, K-means, and Random
Forests, and none of them outperforms the DNN approach that is used
here (Fig. S3 in the Supplementary material), thus we use the results of
the DNN here. In this study, accuracy of the classification is assessed
through the Overall Accuracy, which is the number of the corrected
classified fields (i.e. the summation from the diagonal in the confusion
matrix) divided by the number of the total fields. To achieve Overall
Accuracy, we first generated a well-trained model by tuning its hy-
perparameters through the backpropagation algorithm (Rumelhart
et al., 1986) based on the training dataset, and then applied the model
on the testing dataset. The detailed strategies to separate dataset into
training/testing dataset are addressed in the next section.

2.5. Experiment design

In order to address the overarching questions raised earlier in this
paper (i.e. (1) What accuracy can the integrated time-series Landsat
data and machine learning approach achieve for the crop-type classi-
fication? (2) How early in the growing season can this method achieve
the optimal accuracy of crop-type classification using our approach?),
we ask sub-questions upon which we designed the experiments.
Specifically, we ask the following sub-questions:

Q1. What spectral information is most useful for crop-type classifica-
tion?

Fig. 3. Data availability improvement: using CLU-based vs. pixel-based information.

Fig. 4. Framework of the DNN based crop type classification.
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Q1.1. What thematic classification accuracy can be achieved using
only the spectral features (at a static time) compared to
combining both spectral and temporal phenology informa-
tion?

Q1.2. What thematic classification accuracy can be achieved using
only vegetation indices compared to using the original
spectral reflectance?

Q2. How do spatial and temporal sampling strategies affect the accu-
racy of crop-type classification?
Q2.1. How does the choice of different years of training data affect

classification accuracy?
Q2.2. How does the choice of different spatial sampling strategies

affect classification accuracy?

To answer the above sub-questions, the following experiments were
designed, with the first two groups of experiments addressing Q1, and
the third group of experiments for Q2. The first group of experiments
mainly focuses on the comparison of using information as input for the
classification model (Q1). Specifically, for the spectral feature-only ap-
proach, the original spectral information from each band at a specific day
during the growing season (defined from DOY 91 to 270 with intervals of
5 days) was used in the algorithm. For the spectral and temporal com-
bined approach, data for individual spectral bands were used, but include
the time series of observations across the whole growing season (DOY 91
to 270 with intervals of 5 days) as inputs. By comparing these two ap-
proaches, the added value of the temporal information in the classifica-
tion can be quantified, as well as the value of individual spectral bands
through the inter-band comparison. We also designed the same experi-
ments as above but substitute spectral bands with different VIs, such that
we can answer Q1.2. Additionally, we also investigated whether com-
bining different spectral bands or different VIs could achieve higher
classification performance than only using a single band or a single VI. A
total of 6 spectral bands and 4 VIs were available for testing and a brute
force method was used to explore all possible combinations. For ex-
ample, for six spectral band combinations, there are total 57 tested
combinations (=C6

2+C6
3+C6

4+C6
5+C6

6). For experiments in this
group, the whole dataset was randomly divided into training data and
testing data, which took up 2/3 and 1/3 of the whole dataset respec-
tively. Accuracies were assessed when applying trained models on testing
data.

The second group of experiments was designed to study the influ-
ence of spatial and temporal sampling on crop classification (targeting
Q2). The training/testing data were grouped by either different years or
by different regions to test the influence of temporal and spatial sam-
pling, respectively. Accuracies were assessed from the independent
testing data. To study the influence of different temporal sampling on
classification, we either fixed the starting year or fixed the ending year
in the experiments (targeting at Q2.1). Specifically, for the experiment
that fixes the starting year (2000), data from a different number of
continuous years starting at 2000 were combined to predict the crop
types in the following year (e.g., all data from 2000 to 2005 was used to
predict the crop types in 2006). For the experiment that fixes the ending
year (2014), data of a different number of continuous years before 2015
were combined to predict the crop types in 2015 (e.g., all data from
2010 to 2014 is used to predict the crop types in 2015). As a result, the
first experiment predicts crop types in different years from 2001 to
2015; however, the second experiment only predicts crop types in 2015.
To explore the influence of spatial sampling, Champaign County was
evenly divided into 2 regions from north/east to south/west by lati-
tude/longitude (targeting Q2.2). The north/east region and the south/
west region were alternately used as the source of training data to train
two different models. Then the rest data from the two regions were used
as the testing data for comparison purpose to explore spatial factor
influence on classification.

The third group of experiments was designed to address the second
main question raised in the introduction, i.e. to quantify how early

during the concurrent growing season the classification algorithm can
accurately predict the crop types in the concurrent year. In order to
exclude any correlations between training and testing data, data from
2014 and 2015 are selected as testing data, while data from all years
before 2014 were used for model training. Accuracies are assessed for
independent testing data in both 2014 and 2015. Starting at the DOY
91, more input Landsat data was gradually included in the algorithm to
generate the crop classification until DOY 270. This mimics the real-life
situation that more data will be ingested into the crop classification
procedure as the growing season progresses and the classification per-
formance would be expected to increase as additional dates of remotely
sensed data are added to the classifier until optimal classification per-
formance is achieved.

3. Results

3.1. Time-series profile

Time-series profiles of spectral bands and VIs aggregated from corn/
soybean fields in Champaign County from 2000 to 2015 are shown in
Fig. 5 to illustrate their potential for contributing to crop-type classi-
fication. In Fig. 5, the X-axis is the DOY and the Y-axis is the value of
reflectance or VI. The red line stands for corn and the green line re-
presents soybeans. The buffers indicate one standard deviation calcu-
lated from all fields and years. For the visible spectral bands shown in
Fig. 5(a)–(c), there are large overlaps in their seasonal trajectories be-
tween corn and soybean, especially near the late growing season (after
~DOY 200). The NIR band shows more differences between corn and
soybeans in the later stages of the growing season. The SWIR bands
show a clear difference between corn and soybean during the middle of
the growing season (~DOY 190–200). During this period, the SWIR
curves of corn and soybeans with one standard deviation have no
overlap, which indicates that this feature will be especially useful in
differentiating between corn and soybean. Similar features of SWIR are
also shown in the LSWI, which incorporates the SWIR band in its cal-
culation. NDVI, GCVI and EVI all show more difference between corn
and soybean at the early part and the late part of the growing season,
but there are significant overlaps between these two crop types in these
VIs throughout the growing season.

3.2. Spectral information-based classification

3.2.1. Classification based on a single spectral band
Here we only used a single spectral band or a single VI at any

specific DOY in the growing season to train the classification algorithm.
We find that different bands show various performances at different
DOYs (Fig. 5a). The visible bands (blue, red and green bands) have a
similar performance. The classification accuracy for these visible bands
remains relatively low (0.54–0.61) between DOY 90 and 140, followed
by a large increase in accuracy (0.56–0.73) between DOY 140 and 180
with a peak accuracy (0.73) around DOY 175. Their performance then
drops with the green and red bands having another local optimum
around DOY 220–240, but less so for the blue band. NIR shows a similar
performance as the visible bands during the early growing season and
reaches its peak performance at a relatively later time over a longer
period of time (DOY 210–240). The SWIR-1 and SWIR-2 data reaches
their highest performance (about 0.85 accuracy) around DOY 195,
which is much higher than the performance of any other bands at any
DOYs. In addition, SWIR-1 and SWIR-2 attain their peak performance
only once, which happen at a different time compared with the visible
and NIR bands. Finally, the accuracy performance of SWIR-1 and SWIR-
2 are very similar to each other, with SWIR-1 performing slightly better
than SWIR-2.

3.2.2. Classification based on a single vegetation index
We conducted the same experiments as above (Section 3.2.1) but for

Y. Cai et al. Remote Sensing of Environment 210 (2018) 35–47

40



the four VIs (i.e. EVI, GCVI, NDVI, and LSWI) to study their individual
performance at any specific DOY, with results shown in Fig. 6(b). EVI,
GCVI, and NDVI are found to have a similar pattern in classification
performance, which is very different from LSWI. Specifically, the ac-
curacy performances of EVI, GCVI, and NDVI are all low before DOY
140, followed by the first peak in classification performance (~0.70)
around DOY 175 and then decline to the local minimum around DOY
195. The three VIs then reach a second peak in classification accuracy
with the optimal performance (~0.77) occurring around DOY 235. In
contrast, the LSWI only has one peak performance that occurs around
DOY 190 with a peak classification performance (~0.87) much higher
than the other VIs.

The performances of VIs are consistent with those of individual
spectral bands that were used to calculate VIs, which is largely ex-
pected. In particular, we find that EVI, GCVI, and NDVI, which all use
NIR as a major input, had a similar performance as that of NIR. Since
LSWI is calculated based on the two SWIR bands, LSWI's performance is
also very similar to those of the two SWIR bands.

3.2.3. Classification using a combination of multiple spectral bands
Intuitively, combining more information (either from more spectral

bands or from more VIs) in our model would be expected to improve
the overall classification accuracy based on results in Fig. 6 (visual
bands have peak performance at the early stage, SWIR bands have peak
performance at the middle stage, and NIR has peak performance at the

late stage). This hypothesis was explicitly tested here with results pre-
sented in Fig. 7. The term cmbx (combination x=2, 3, 4, 5, 6) in Fig. 7
stands for x number of bands that are combined for classification ex-
periment. For example, cmb2means any two spectral bands are used for
classification, thus there exist C6

2= 15 different combinations and each
of them is tested here and only the best one will be recorded. The result
in Fig. 7 illustrates that all combinations share a similar classification
accuracy pattern across the growing season and the combination of
more spectral bands lead to a higher accuracy. The peak accuracy ap-
pears around DOY195, which is consistent with the results of single
SWIR-1/SWIR-2 band-based classification, indicating that these two
bands dominate the classification accuracy around that specific time
period. In addition, another peak accuracy appears around DOY 240
due to the contribution of the NIR region. Accuracy increases sig-
nificantly between DOY 140 and 175, indicating some significant fea-
tures of corn and soybeans are captured during their early vegetative
stages. In summary, combining spectral bands improves the perfor-
mance at each stage during the growing season.

3.2.4. Classification using a combination of multiple VIs
The same analysis as Section 3.2.3 was also conducted for different

combinations of VIs at specific DOYs with the results shown in Fig. 8.
For the four VIs, a total 11 combinations were tested, and the results
show a similar pattern to those from the combination of the spectral
bands. From DOY 170 to 240, a relatively high classification accuracy is

Fig. 5. Time-series spectral band information and vegetation indices are aggregated for all the corn and soybean fields and years for the Champaign County, IL. The red line stands for
corn, and the green line represents soybeans. The buffers indicate one standard deviation calculated from all fields and years. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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achieved, while there is a steep increase and decrease in accuracy be-
fore and after that time period, respectively. In sum, combining VIs
improves performance at each stage during the growing season with
little difference in classification accuracy observed among the different
combinations of VIs.

3.3. Classification using both spectral and temporal information

While in Section 3.2 spectral bands or VIs either in individually or in
a combination were evaluated, but only at a specific DOY (i.e., single
date). In this section, the spectral information is combined with the
temporal information for the entire growing season, i.e. time series of
the spectral bands or VIs are used here for crop classification.

3.3.1. Classification based on a single spectral band/VI
Fig. 9 shows the classification results of a single band or VI using all

growing season data in the classification model. The accuracies of in-
dividual spectral bands have greater accuracy variations (from 0.87 to
0.93) than the results obtained using different VIs, which shows a more
consistent classification accuracy pattern (the accuracy difference is
within 0.01). The accuracy of VIs does not significantly exceed the
accuracy of individual spectral bands. In general, the VIs have higher
accuracy than all the visible bands, but VIs have a similar accuracy as
infrared band (i.e. NIR and SWIR-1) results.

3.3.2. Classification using a combination of multiple spectral bands/VIs
Like the previous experiments using various combinations of data,

Fig. 7. Classification performance of using a combination of spectral bands at any specific DOY. The term cmbx stands for x number of spectral bands that are combined for classification
experiment.

Fig. 8. Classification performance of using a combination of VIs at any specific DOY. The term cmbx stands for x number of VIs that are combined for classification experiment.

Fig. 6. Classification performance of using single spectral band (a) or a single VI (b) at any specific DOY.
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the same combinations were tested using the entire time series of in-
dividual spectral bands or VIs data across the growing season, as shown
in Fig. 10. The incorporation of more bands or VIs leads to improved
classification performance, but this improvement is marginal (only
within 0.02 between the lowest and highest accuracy). Table 3 shows
the specific spectral bands used in combination with the highest clas-
sification performance. Green and SWIR-1 appear in all the best per-
forming combinations, which is identical to the combinations in spec-
tral band-based classifications.

Comparing results in Section 3.2 (only using the data from a specific
DOY) and in Section 3.3 (using the whole growing season time series),

we can increase accuracy by 5% when using the temporal information;
thereby demonstrating the added value of using temporal information
for the classification results.

3.4. Impact of temporal and spatial sampling on classification

3.4.1. Impact of temporal sampling for classification
Considering real world applications, a more useful way to conduct

classification is to use only previous continuous years' data to train the
model, and to use the current year's data for testing, such that we have a
predictive and forecasting capability for the current year's crop types.
To explore this scenario, two experiments are designed using combined
spectral bands with temporal information. One has a fixed starting year
(2000) and different numbers of the continuous years' data are used to
train and predict crop types in the following year. For example, all data
from 2000 to 2005 is used to predict crop types in 2006. Fig. 11(a)
shows a generally increasing trend in performance (except for some
outliers), indicating that including more years of data for classification
training can achieve a higher performance for classifying crop types for

Fig. 9. Classification performance of a single band or a single VI, when incorporating the temporal phenology information in the classification.

Fig. 10. Classification performance of using a combination of spectral bands (a) or VIs (b) with the phenology information, and both mean and maximum performance of different
combination are shown. The term cmbx stands for x number of spectral bands (or VIs) that are combined for classification experiment.

Table 3
The best combinations for different number combinations.

cmb2 cmb3 cmb4 cmb5 cmb6

Combination Green,
SWIR-1

Green, SWIR-
1, SWIR-2

Green, Red,
NIR, SWIR-1

All except
Blue

All
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the next year. The outliers occur in 2002, 2003, 2008 and 2012. Since
SLC-off occurred after May 31, 2003, that may explain why perfor-
mance in 2002 is high but slightly decreases in 2003. Additionally, if we
compare results in Fig. 11(a) with Fig. 3, we can find low data avail-
ability will lead to poor performance, which can further explain low
accuracies in 2004 and 2008. 2012 is a drought year, and the temporal
phenology information of crop is different from other years. As a result,
the model trained with data only in normal years performs poorly for
this exceptional drought year. The other experiment uses a fixed ending
year (2014), and uses different numbers of previous continuous years'
combination data to train and predict crop types in 2015 (e.g., all data
from 2010 to 2014 is used to predict crop types in 2015), with the
results shown in Fig. 11(b). For the second experiment, if we use more
years of data to only predict crop types in 2015, a clear increase in
performance occurs when more years of data are included (Fig. 11(b))
with the performance increase plateauing after around 10 years.

3.4.2. Impact of spatial sampling for classification
This experiment aims to test the impact of different spatial sampling

schemes on crop-type classification accuracy. In Fig. 12, format “X-Y”
refers to the scenario that uses data within X region as the training data
and tests the model output using data within Y region. Specifically,
Champaign County is evenly divided into 2 regions from north to east
and from south to west evenly by latitude/longitude, respectively, with
the north/east area marked as “N”/“E” and the south/west area marked
as “S”/“W”. For each region, we divide the data into training and
testing data with no overlaps. Fig. 12 shows that N-N and S-S (i.e.
training and testing samples are from the same regions) have higher
performance than N-S and S-N (i.e. training and testing samples are
from different regions) respectively, similar to E-E, W-W, E-W, and W-E.
In addition, models with combined regions (NS or EW) as training data
perform slightly better than that training and testing samples from the
same regions. These results indicate that spatial heterogeneities exist,

but benefits from building different specific models for sub-regions are
not obvious since Champaign County is a small region and spatial
heterogeneities are not significantly large within the county. As a result,
one model for the whole region is appropriate. We suggest that future
applications of our method for a larger area (e.g. the whole state of
Illinois, or many states) should consider the spatial heterogeneity and
possibly developing region-specific training algorithms for different
regions.

3.5. In-season forecasting: pushing to early stage

For any given year, the earlier a relatively high accuracy in classi-
fication can be achieved, the more valuable these results are for deci-
sion-making activities. Here, an experiment is developed to test how
early during the growing season and acceptable level of classification
accuracy can be achieved. To achieve this goal, a fixed starting date is
set at DOY 91 and the ending date is varied from DOY 96 to 270. For
each ending date, the time series of historical data used to train the
classification model spans from DOY 91 to that specific end date. The
classification model uses the temporal phenology information of six
spectral bands combined, which represents the best performance across
different combinations (Fig. 10(a)). The trained classification model is
then applied to data in the next year for the test (e.g. The top panel of
Fig. 13 shows the results of using the data from 2000 to 2013, and
testing using the 2014 data; the bottom panel of Fig. 13 shows the re-
sults of using the data from 2000 to 2014, and testing using the 2015
data). The blue line in Fig. 13 shows the classification accuracy at
different ending dates, and the red line shows the rate of accuracy
change. We smoothed the accuracy curve in Fig. 13 by applying a
moving average with the window size of 3.

For both cases in Fig. 13, we find that the classification accuracy
increases with the progression of time (i.e. more inputs from satellite
data), and the accuracy reaches a plateau around DOY 200 (i.e. middle

Fig. 11. Impacts of using different temporal sampling for the final classification results. (a) Using the data of different numbers of continuous years starting in 2000 to predict crop types
in the following year (for example, we use all the data from 2000 to 2005 to predict the crop types in 2006). To reveal the trend, we conducted linear regression and also applied RANdom
SAmple Consensus (RANSAC) algorithm to linear regression, shown in red and blue lines respectively. The outliers are detected by RANSAC algorithm. (b) Using data of different numbers
of continuous years ending in 2014 to predict crops type in 2015 (for example, we use all the data from 2010 to 2014 to predict the crop types in 2015). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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of July), which is confirmed by a commensurate decrease in the change
in accuracy rate (i.e. the red line approaches zero at and after ~DOY
200). We also find that the largest positive changing accuracy rate
change occurs between DOY 140 and 160 (late May and early June) for
both years. This is expected, as late May and early June is the early
vegetative growth period for both corn and soybean, and their different
sowing dates and different canopy development patterns should lead to
the most obvious spectral-temporal differences between them. For both
test years, the classification model reached 95% classification accuracy
by around DOY 180 (end of June).

4. Discussion

The discussion is organized to first summarize the answers to the
questions that are posed at the end of Section 1 and in Section 2.5, and
then addresses some limitations of this study. The first research ques-
tion is related to the best classification accuracy that our approach can
achieve, and explored what information is most useful to achieve the
highest accuracy performance. We answer this question from the fol-
lowing five aspects.

(1) The results demonstrate that combining the CLU and Landsat
image data provides an effective solution to generate time-series data
that can be used for the subsequent crop-type classification. The data
availability is improved by using CLU-based information instead of
pixel-based information. In Fig. 3, the improvement increases after
2003 since the Landsat 7 began to have SLC-off, which indicates our
method is efficient to handle the SLC-off effect.

(2) The SWIR bands, which have not been commonly used in many
previous crop-type classification efforts, are found to have notably
better ability to distinguish between corn and soybeans than visible and
NIR bands (Figs. 6 & 9). SWIR bands are related to the crop water
content and have been used to detect crop water stresses (Ghulam et al.,

Fig. 12. Impacts of using different spatial sam-
pling for the final classification results. (a) shows
north-to-south division strategy and its perfor-
mance, while (b) shows east-to-west division
strategy and its performance. Labels in histogram
represent where the training and testing samples
come from, e.g. N-N means using the North-re-
gion samples to train and North-region samples to
test; EW-W means using both the East-region and
West-region samples to train and West-region
samples to test.

Fig. 13. Classification performance as a function of time (blue line). For example, the
DOY 125 means that all the available data from the starting day (DOY 91) to DOY 125
from the historical years are used to train the model and the current year's satellite data
from DOY 91–125 are used to predict the current year's crop types. The red line refers to
the rate of change in the blue line, which indicates the rate of performance change with
more data ingested for the classification. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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2008; Xiao et al., 2006). A recent study also found the potential use of
SWIR in crop yield estimation (You et al., 2017). SWIR also contributes
to the higher performance of LSWI than other VIs evaluated in this
study. One notable feature of the SWIR bands is that they achieve the
highest classification performance in classification near the middle of
the growing season, which is a period during the growing season that
the NIR has been largely saturated (Fig. 6). We thus infer that the lar-
gest difference between corn and soybeans in terms of canopy water
contents occurs during the peak-growing season.

(3) The results confirm that the inclusion of temporal information
through time-series data inputs improves classification accuracy com-
pared to using single-date data (i.e. snapshots). Using temporal and
spectral information together achieves 10–15% higher classification
accuracy than only using spectral information at one specific date.

(4) The results also confirm that combining all spectral bands leads
to the highest classification performance. However, if only a subset of
the Landsat spectral bands are to be used, the green band in combi-
nation with one of the two SWIR bands can provide the highest clas-
sification performance among other combinations. In addition, VIs do
not perform significantly better than original spectral data (especially
the SWIR bands), and the performance among different VIs are similar.

(5) We assess the impact of different spatial and temporal sampling
strategies on crop classification performance. We find that increasing
the number of years in training data and collecting samples more evenly
across the spatial domain of the study area usually lead to higher
classification accuracy. Though we also find that the classification
performance stabilized after about 10 years of training data is used, and
has little gain in thematic accuracy when additional years of data are
added.

The second research question focuses on the ability of our approach
to make the in-season classification. The model with the highest clas-
sification performance (i.e., using all spectral bands and temporal in-
formation) trained with all the previous year's data has attained high
classification accuracy when applied to the next year (Fig. 13), with the
final accuracy reaching 96%. For within-season classification, our best
model to classify corn and soybeans reached 95% classification accu-
racy by DOY ~180 (end of June). This result means that corn and
soybeans should be able to be classified at a relatively high thematic
accuracy by early to mid-growing season using satellite data collected
for all prior dates acquired earlier in the growing season. The latter
condition can be fulfilled now, as the newly collected Landsat 7 and 8
data become available for processing within one week of data acqui-
sition (http://landsat.usgs.gov/CDR_LSR.php). As Sentinel-2 data be-
comes available, an additional source of near-real-time data will further
improve the satellite data availability and thus the classification accu-
racy. Finally, the USDA CDL layer is used here as the benchmark data
set for locating historical corn and soybean fields across the study area.
It is worth noting that the major motivation of this work is not to
substitute the CDL, but rather to provide an in-season classification
approach/product that has the similar performance of CDL for the U.S.
Corn Belt, but can provide near-real-time, in-season crop maps for de-
cision-making activities. The results here demonstrate that our pro-
posed methodology has substantial potential to meet this goal.

It is worth noting the following limitations and uncertainties of this
study, some of which represent future directions to further improve this
classification method. One major limitation is that all land covers that
have no corn or soybean are pre-filtered; in other words, we only focus
on classifying a binary system (corn vs. soybean). However, as previous
studies (Wardlow et al., 2007; Wardlow and Egbert, 2008) pointed out
for the broader U.S. Corn Belt, differentiating corn and soybean remains
the biggest challenges as other types of crops (e.g. winter wheat, sor-
ghum) or natural vegetation (e.g. grass and trees) usually have a very
different temporal phenology than corn and soybean. Furthermore,
only focusing on corn and soybean is justified for the targeted study
area, as they are the dominant crop types in the main states of the U.S.
Corn Belt. However, future research efforts should be devoted to

extending this approach and including other types of crop types and
natural vegetation types. There are also expected uncertainties in the
classification approach, and reducing these uncertainties is another
future research direction. First, when a time series stack from Landsat
data is generated for each field, interpolation is used to fill gaps in the
Landsat data. We have tested a series of other interpolation methods
and found little influence on the final classification performance. With
more satellite data becoming available, such as Sentinel-2 data, the gap
filling performance can be further improved. Another possible approach
is to use multi-sensor fusion data, such as the STARFM algorithm de-
veloped by (Gao et al., 2006) to integrate MODIS (low spatial, but high
temporal resolution) and Landsat (low temporal, but high spatial re-
solution), for the classification purpose (Gao et al., 2017). Second, we
use CLU to aggregate the field or sub-field level information (see details
in Section 2.3). The major motivation of using CLU is to aggregate the
spectral information from many pixels in order to largely avoid the
cloud cover issue. However, it should be recognized that within a CLU
there can be a mixture of crops and this mixture may also change over
time, and that our current approach assumes that the division of dif-
ferent fields is known.

5. Conclusion

This study has demonstrated that combining time-series Landsat
Surface Reflectance Data and CLUs with a machine learning approach
provides a cost-effective and high-performance option for field-level
and in-season crop-type classification for corn/soybean dominated Corn
Belt landscape, with a detailed case study in Champaign County,
Illinois. This study is important for both scientific and practical uses.
The classification model based on DNN was applied to distinguish corn
and soybean patches for each CLU field, which was trained and tested
using the CDL as the ground truth. Systematic experiments were con-
ducted to determine which information is most useful for classifying
corn and soybeans. Overall, a high Overall Accuracy of classification
(~97%) is achieved using this method. In addition, the ability to per-
form within-season crop-type classification can be achieved at a rela-
tively early stage of the growing season at about DOY 210 (late July or
early August), with equivalent accuracy (~95%) to classification results
at the end of year based on an entire growing season of data inputs. All
data sources (LSRD, CLU, and CDL) used in this study are publicly
available. The current approach has a great potential to be scaled up to
other counties, states, and possibly the whole U.S. Corn Belt. Further
improvements can be developed, such as using texture features ex-
tracted from high temporal-spatial resolution fusion data (e.g. fusion
data MODIS, Landsat).
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